Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4100, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773091

RESUMEN

In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals - the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Hipocampo , Aprendizaje , Potenciación a Largo Plazo , Optogenética , Área Tegmental Ventral , Animales , Potenciación a Largo Plazo/fisiología , Área Tegmental Ventral/fisiología , Masculino , Dopamina/metabolismo , Ratones , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Hipocampo/fisiología , Hipocampo/metabolismo , Aprendizaje/fisiología , Ratones Transgénicos , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Sinapsis/fisiología , Sinapsis/metabolismo , Ratones Endogámicos C57BL , Memoria/fisiología
2.
Eur J Neurosci ; 59(7): 1558-1566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308520

RESUMEN

The excitation-inhibition imbalance manifesting as epileptic activities in Alzheimer's disease is gaining more and more attention, and several potentially involved cellular and molecular pathways are currently under investigation. Based on in vitro studies, dopamine D1-type receptors in the anterior cingulate cortex and the hippocampus have been proposed to participate in this peculiar co-morbidity in mouse models of amyloidosis. Here, we tested the implication of dopaminergic transmission in vivo in the Tg2576 mouse model of Alzheimer's disease by monitoring epileptic activities via intracranial EEG before and after treatment with dopamine antagonists. Our results show that neither the D1-like dopamine receptor antagonist SCH23390 nor the D2-like dopamine receptor antagonist haloperidol reduces the frequency of epileptic activities. While requiring further investigation, our results indicate that on a systemic level, dopamine receptors are not significantly contributing to epilepsy observed in vivo in this mouse model of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Epilepsia , Ratones , Animales , Antagonistas de Dopamina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Receptores de Dopamina D2/metabolismo , Benzazepinas/farmacología , Benzazepinas/uso terapéutico , Receptores de Dopamina D1/metabolismo , Epilepsia/tratamiento farmacológico , Modelos Animales de Enfermedad , Amiloidosis/tratamiento farmacológico
3.
Transl Psychiatry ; 13(1): 227, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365183

RESUMEN

Mood disorders are associated with hypothalamic-pituitary-adrenal axis overactivity resulting from a decreased inhibitory feedback exerted by the hippocampus on this brain structure. Growing evidence suggests that antidepressants would regulate hippocampal excitatory/inhibitory balance to restore an effective inhibition on this stress axis. While these pharmacological compounds produce beneficial clinical effects, they also have limitations including their long delay of action. Interestingly, non-pharmacological strategies such as environmental enrichment improve therapeutic outcome in depressed patients as in animal models of depression. However, whether exposure to enriched environment also reduces the delay of action of antidepressants remains unknown. We investigated this issue using the corticosterone-induced mouse model of depression, submitted to antidepressant treatment by venlafaxine, alone or in combination with enriched housing. We found that the anxio-depressive phenotype of male mice was improved after only two weeks of venlafaxine treatment when combined with enriched housing, which is six weeks earlier than mice treated with venlafaxine but housed in standard conditions. Furthermore, venlafaxine combined with exposure to enriched environment is associated with a reduction in the number of parvalbumin-positive neurons surrounded by perineuronal nets (PNN) in the mouse hippocampus. We then showed that the presence of PNN in depressed mice prevented their behavioral recovery, while pharmacological degradation of hippocampal PNN accelerated the antidepressant action of venlafaxine. Altogether, our data support the idea that non-pharmacological strategies can shorten the onset of action of antidepressants and further identifies PV interneurons as relevant actors of this effect.


Asunto(s)
Parvalbúminas , Inhibidores Selectivos de la Recaptación de Serotonina , Ratones , Masculino , Animales , Clorhidrato de Venlafaxina/farmacología , Parvalbúminas/metabolismo , Serotonina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Antidepresivos/metabolismo , Interneuronas/metabolismo
4.
Neurobiol Aging ; 123: 35-48, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634385

RESUMEN

The link between Alzheimer's disease (AD) and network hypersynchrony - manifesting as epileptic activities - received considerable attention in the past decade. However, several questions remain unanswered as to its mechanistic underpinnings. Therefore, our objectives were (1) to better characterise epileptic events in the Tg2576 mouse model throughout the sleep-wake cycle and disease progression via electrophysiological recordings and (2) to explore the involvement of noradrenergic transmission in this pathological hypersynchrony. Over and above confirming the previously described early presence and predominance of epileptic events during rapid-eye-movement (REM) sleep, we also show that these events do not worsen with age and are highly phase-locked to the section of the theta cycle during REM sleep where hippocampal pyramidal cells reach their highest firing probability. Finally, we reveal an antiepileptic mechanism of noradrenergic transmission via α1-adrenoreceptors that could explain the intriguing distribution of epileptic events over the sleep-wake cycle in this model, with potential therapeutic implications in the treatment of the epileptic events occurring in many AD patients.


Asunto(s)
Enfermedad de Alzheimer , Epilepsia , Ratones , Animales , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Sueño/fisiología , Modelos Animales de Enfermedad , Sueño REM
5.
Neuron ; 110(17): 2854-2866.e4, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35858622

RESUMEN

Area CA2 is a critical region for diverse hippocampal functions including social recognition memory. This region has unique properties and connectivity. Notably, intra-hippocampal excitatory inputs to CA2 lack canonical long-term plasticity, but inhibitory transmission expresses a long-term depression mediated by Delta-opioid receptors (DOR-iLTDs). Evidence indicates that DOR-iLTDs are insufficient to underlie social coding. Here, we report a novel inhibitory plasticity mediated by cannabinoid type 1 receptor activation (CB1R-iLTD). Surprisingly, CB1R-iLTD requires previous induction of DOR-iLTDs, indicating a permissive role for DOR plasticity. Blockade of CB1Rs in CA2 completely prevents social memory formation. Furthermore, the sequentiality of DOR- and CB1R-mediated plasticity occurs in vivo during successive social interactions. Finally, CB1R-iLTD is altered in a mouse model of schizophrenia with impaired social cognition but is rescued by a manipulation that also rescues social memory. Altogether, our data reveal a unique interplay between two inhibitory plasticities and a novel mechanism for social memory formation.


Asunto(s)
Hipocampo , Plasticidad Neuronal , Animales , Ratones , Plasticidad Neuronal/fisiología , Receptor Cannabinoide CB1 , Reconocimiento en Psicología
6.
iScience ; 25(3): 103895, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35243253

RESUMEN

Parvalbumin (PV)-expressing interneurons which are often associated with the specific extracellular matrix perineuronal net (PNN) play a critical role in the alteration of brain activity and memory performance in Alzheimer's disease (AD). The integrity of these neurons is crucial for normal functioning of the hippocampal subfield CA2, and hence, social memory formation. Here, we find that social memory deficits of mouse models of AD are associated with decreased presence of PNN around PV cells and long-term synaptic plasticity in area CA2. Furthermore, single local injection of the growth factor neuregulin-1 (NRG1) is sufficient to restore both PV/PNN levels and social memory performance of these mice. Thus, the PV/PNN disruption in area CA2 could play a causal role in social memory deficits of AD mice, and activating PV cell pro-maturation pathways may be sufficient to restore social memory.

7.
Cell Rep ; 29(5): 1099-1112.e4, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665627

RESUMEN

Adolescence is a vulnerable period characterized by major cognitive changes. The mechanisms underlying the emergence of new cognitive functions are poorly understood. We find that a long-term depression of inhibitory transmission (iLTD) from parvalbumin-expressing (PV+) interneurons in the hippocampal area Cornu Ammonis 2 (CA2) is absent in young mice but emerges at the end of adolescence. We demonstrate that the maturation of both the perineuronal net (PNN) and signaling through ErbB4 is required for this plasticity. Furthermore, we demonstrate that social recognition memory displays the same age dependence as iLTD and is impaired by targeted degradation of the PNN or iLTD blockade in area CA2. Our data reveal an unusual developmental rule for plasticity at the PV+ interneuron transmission in area CA2 and indicate that this plasticity is involved in the emergence of higher cognitive function, such as social memory formation, in late adolescence.


Asunto(s)
Región CA2 Hipocampal/metabolismo , Interneuronas/metabolismo , Memoria , Plasticidad Neuronal , Parvalbúminas/metabolismo , Receptor ErbB-4/metabolismo , Transducción de Señal , Conducta Social , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Depresión Sináptica a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibición Neural , Neurregulina-1/metabolismo , Receptores Opioides delta/metabolismo , Sinapsis/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
Neurobiol Aging ; 72: 147-158, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30273829

RESUMEN

Recent findings show that parvalbumin (PV) interneuron function is impaired in Alzheimer's disease (AD), and that this impairment in PV function can be linked to network dysfunction and memory deficits. PV cells are often associated with a specific extracellular matrix, the perineuronal net (PNN). PNNs are believed to protect PV cell integrity, and whether the amyloidopathy affects PNNs remains unclear. Here, we evaluated the number of PV cells with and without PNNs in the hippocampus of the Tg2576 mouse model of AD at different stages of the disease. We show a deficit of PV+ and/or PV+/PNN+ cells in the areas CA1, CA2, and CA3 in Tg2576 as young as 3 months of age. Importantly, transient exposure to an enriched environment, which has proven long-lasting beneficial effects on memory in AD subjects, rescues the PV/PNN cell number deficits. We conclude that cognitive improvements induced by enriched environment in AD mouse models could be supported by a remodeling of hippocampal PV cell network and their PNNs.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Ambiente , Matriz Extracelular , Hipocampo/citología , Interneuronas/citología , Parvalbúminas/metabolismo , Factores de Edad , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
9.
Neuron ; 98(1): 75-89.e5, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29551491

RESUMEN

Inhibitory interneurons regulate the oscillatory rhythms and network synchrony that are required for cognitive functions and disrupted in Alzheimer's disease (AD). Network dysrhythmias in AD and multiple neuropsychiatric disorders are associated with hypofunction of Nav1.1, a voltage-gated sodium channel subunit predominantly expressed in interneurons. We show that Nav1.1-overexpressing, but not wild-type, interneuron transplants derived from the embryonic medial ganglionic eminence (MGE) enhance behavior-dependent gamma oscillatory activity, reduce network hypersynchrony, and improve cognitive functions in human amyloid precursor protein (hAPP)-transgenic mice, which simulate key aspects of AD. Increased Nav1.1 levels accelerated action potential kinetics of transplanted fast-spiking and non-fast-spiking interneurons. Nav1.1-deficient interneuron transplants were sufficient to cause behavioral abnormalities in wild-type mice. We conclude that the efficacy of interneuron transplantation and the function of transplanted cells in an AD-relevant context depend on their Nav1.1 levels. Disease-specific molecular optimization of cell transplants may be required to ensure therapeutic benefits in different conditions.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ondas Encefálicas/fisiología , Encéfalo/metabolismo , Cognición/fisiología , Interneuronas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/biosíntesis , Potenciales de Acción/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Animales , Encéfalo/cirugía , Modelos Animales de Enfermedad , Expresión Génica , Hipocampo/metabolismo , Hipocampo/cirugía , Humanos , Interneuronas/trasplante , Locomoción/fisiología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1/genética
10.
eNeuro ; 5(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627643

RESUMEN

Alzheimer's disease (AD) begins several decades before the onset of clinical symptoms, at a time when women may still undergo reproductive cycling. Whether ovarian functions alter substrates of AD pathogenesis is unknown. Here we show that ovarian cycle stages significantly modulate AD-related alterations in neural network patterns, cognitive impairments, and pathogenic protein production in the hAPP-J20 mouse model of AD. Female hAPP mice spent more time in estrogen-dominant cycle stages and these ovarian stages worsened AD-related network dysfunction and cognitive impairments. In contrast, progesterone-dominant stages and gonadectomy attenuated these AD-related deficits. Further studies revealed a direct role for estradiol in stimulating neural network excitability and susceptibility to seizures in hAPP mice and increasing amyloid beta levels. Understanding dynamic effects of the ovarian cycle on the female nervous system in disease, including AD, is of critical importance and may differ from effects on a healthy brain. The pattern of ovarian cycle effects on disease-related networks, cognition, and pathogenic protein expression may be relevant to young women at risk for AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Ondas Encefálicas/fisiología , Encéfalo/patología , Trastornos del Conocimiento , Ciclo Menstrual/fisiología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Castración , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/fisiopatología , Convulsivantes/toxicidad , Modelos Animales de Enfermedad , Estradiol/metabolismo , Conducta Exploratoria/fisiología , Femenino , Humanos , Ciclo Menstrual/genética , Ratones , Ratones Transgénicos , Mutación/genética , Pentilenotetrazol/toxicidad , Progesterona/metabolismo , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
11.
Brain Struct Funct ; 221(3): 1591-605, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25596866

RESUMEN

The neural cell adhesion molecule NCAM and its association with the polysialic acid (PSA) are believed to contribute to brain structural plasticity that underlies memory formation. Indeed, the attachment of long chains of PSA to the glycoprotein NCAM down-regulates its adhesive properties by altering cell-cell interactions. In the brain, the biosynthesis of PSA is catalyzed by two polysialyltransferases, which are differentially regulated during lifespan. One of them, ST8SiaIV (PST), is predominantly expressed during adulthood whereas the other one, ST8SiaII (STX), dominates during embryonic and post-natal development. To understand the role played by ST8SiaIV during learning and memory and its underlying hippocampal plasticity, we used knockout mice deleted for the enzyme ST8SiaIV (PST-ko mice). At adult age, PST-ko mice show a drastic reduction of PSA-NCAM expression in the hippocampus and intact hippocampal adult neurogenesis. We found that these mice display impaired long-term but not short-term memory in both, spatial and non-spatial behavioral tasks. Remarkably, memory deficits of PST-ko mice were abolished by exposure to environmental enrichment that was also associated with an increased number of PSA-NCAM expressing new neurons in the dentate gyrus of these mice. Whether the presence of a larger pool of immature, likely plastic, new neurons favored the rescue of long-term memory in PST-ko mice remains to be determined. Our findings add new evidence to the role played by PSA in memory consolidation. They also suggest that PSA synthesized by PST critically controls the tempo of new neurons maturation in the adult hippocampus.


Asunto(s)
Ambiente Controlado , Hipocampo/enzimología , Memoria/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Sialiltransferasas/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis , Plasticidad Neuronal , Sialiltransferasas/genética , Memoria Espacial/fisiología
12.
Front Aging Neurosci ; 7: 178, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26441640

RESUMEN

The cognitive reserve hypothesis claims that the brain can overcome pathology by reinforcing preexistent processes or by developing alternative cognitive strategies. Epidemiological studies have revealed that this reserve can be built throughout life experiences as education or leisure activities. We previously showed that an early transient environmental enrichment (EE) durably improves memory performances in the Tg2576 mouse model of Alzheimer's disease (AD). Recently, we evidenced a hypersynchronous brain network activity in young adult Tg2576 mice. As aberrant oscillatory activity can contribute to memory deficits, we wondered whether the long-lasting memory improvements observed after EE were associated with a reduction of neuronal network hypersynchrony. Thus, we exposed non-transgenic (NTg) and Tg2576 mice to standard or enriched housing conditions for 10 weeks, starting at 3 months of age. Two weeks after EE period, Tg2576 mice presented similar seizure susceptibility to a GABA receptor antagonist. Immediately after and 2 weeks after this enrichment period, standard and enriched-housed Tg2576 mice did not differ with regards to the frequency of interictal spikes on their electroencephalographic (EEG) recordings. Thus, the long-lasting effect of this EE protocol on memory capacities in Tg2576 mice is not mediated by a reduction of their cerebral aberrant neuronal activity at early ages.

13.
PLoS One ; 10(3): e0119910, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25768013

RESUMEN

Cortical and hippocampal hypersynchrony of neuronal networks seems to be an early event in Alzheimer's disease pathogenesis. Many mouse models of the disease also present neuronal network hypersynchrony, as evidenced by higher susceptibility to pharmacologically-induced seizures, electroencephalographic seizures accompanied by spontaneous interictal spikes and expression of markers of chronic seizures such as neuropeptide Y ectopic expression in mossy fibers. This network hypersynchrony is thought to contribute to memory deficits, but whether it precedes the onset of memory deficits or not in mouse models remains unknown. The earliest memory impairments in the Tg2576 mouse model of Alzheimer's disease have been observed at 3 months of age. We thus assessed network hypersynchrony in Tg2576 and non-transgenic male mice at 1.5, 3 and 6 months of age. As soon as 1.5 months of age, Tg2576 mice presented higher seizure susceptibility to systemic injection of a GABAA receptor antagonist. They also displayed spontaneous interictal spikes on EEG recordings. Some Tg2576 mice presented hippocampal ectopic expression of neuropeptide Y which incidence seems to increase with age among the Tg2576 population. Our data reveal that network hypersynchrony appears very early in Tg2576 mice, before any demonstrated memory impairments.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Biomarcadores/metabolismo , Sincronización de Fase en Electroencefalografía/fisiología , Red Nerviosa/fisiopatología , Convulsiones/fisiopatología , Factores de Edad , Enfermedad de Alzheimer/complicaciones , Análisis de Varianza , Animales , Electroencefalografía , Sincronización de Fase en Electroencefalografía/efectos de los fármacos , Antagonistas de Receptores de GABA-A/farmacología , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Neuropéptido Y/metabolismo , Convulsiones/complicaciones , Convulsiones/metabolismo
14.
Ann Clin Transl Neurol ; 2(11): 1012-28, 2015 11.
Artículo en Inglés | MEDLINE | ID: mdl-26732627

RESUMEN

OBJECTIVE: Dementia with Lewy bodies (DLB) is associated with the accumulation of wild-type human α-synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN. METHODS: To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity-dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB. RESULTS: We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power. INTERPRETATION: We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.

15.
PLoS One ; 8(9): e76497, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086745

RESUMEN

At advanced stages of Alzheimer's disease, cognitive dysfunction is accompanied by severe alterations of hippocampal circuits that may largely underlie memory impairments. However, it is likely that anatomical remodeling in the hippocampus may start long before any cognitive alteration is detected. Using the well-described Tg2576 mouse model of Alzheimer's disease that develops progressive age-dependent amyloidosis and cognitive deficits, we examined whether specific stages of the disease were associated with the expression of anatomical markers of hippocampal dysfunction. We found that these mice develop a complex pattern of changes in their dentate gyrus with aging. Those include aberrant expression of neuropeptide Y and reduced levels of calbindin, reflecting a profound remodeling of inhibitory and excitatory circuits in the dentate gyrus. Preceding these changes, we identified severe alterations of adult hippocampal neurogenesis in Tg2576 mice. We gathered converging data in Tg2576 mice at young age, indicating impaired maturation of new neurons that may compromise their functional integration into hippocampal circuits. Thus, disruption of adult hippocampal neurogenesis occurred before network remodeling in this mouse model and therefore may account as an early event in the etiology of Alzheimer's pathology. Ultimately, both events may constitute key components of hippocampal dysfunction and associated cognitive deficits occurring in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Hipocampo/patología , Hipocampo/fisiopatología , Neurogénesis , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Biomarcadores/metabolismo , Calbindina 1/metabolismo , Recuento de Células , Movimiento Celular , Giro Dentado/metabolismo , Giro Dentado/patología , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Neuropéptido Y/metabolismo , Factores de Tiempo
16.
J Clin Invest ; 123(6): 2719-29, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23676464

RESUMEN

Adult-onset autosomal-dominant leukodystrophy (ADLD) is a progressive and fatal neurological disorder characterized by early autonomic dysfunction, cognitive impairment, pyramidal tract and cerebellar dysfunction, and white matter loss in the central nervous system. ADLD is caused by duplication of the LMNB1 gene, which results in increased lamin B1 transcripts and protein expression. How duplication of LMNB1 leads to myelin defects is unknown. To address this question, we developed a mouse model of ADLD that overexpresses lamin B1. These mice exhibited cognitive impairment and epilepsy, followed by age-dependent motor deficits. Selective overexpression of lamin B1 in oligodendrocytes also resulted in marked motor deficits and myelin defects, suggesting these deficits are cell autonomous. Proteomic and genome-wide transcriptome studies indicated that lamin B1 overexpression is associated with downregulation of proteolipid protein, a highly abundant myelin sheath component that was previously linked to another myelin-related disorder, Pelizaeus-Merzbacher disease. Furthermore, we found that lamin B1 overexpression leads to reduced occupancy of Yin Yang 1 transcription factor at the promoter region of proteolipid protein. These studies identify a mechanism by which lamin B1 overexpression mediates oligodendrocyte cell-autonomous neuropathology in ADLD and implicate lamin B1 as an important regulator of myelin formation and maintenance during aging.


Asunto(s)
Lamina Tipo B/metabolismo , Oligodendroglía/patología , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Animales , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Ataxia de la Marcha/metabolismo , Ataxia de la Marcha/patología , Ataxia de la Marcha/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Lamina Tipo B/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Proteína Proteolipídica de la Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Oligodendroglía/metabolismo , Enfermedad de Pelizaeus-Merzbacher/patología , Enfermedad de Pelizaeus-Merzbacher/fisiopatología , Regiones Promotoras Genéticas , Unión Proteica , Prueba de Desempeño de Rotación con Aceleración Constante , Convulsiones/metabolismo , Convulsiones/patología , Convulsiones/fisiopatología , Factor de Transcripción YY1/metabolismo
17.
Neurobiol Aging ; 34(1): 211-25, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22727275

RESUMEN

Levels of educational and occupational attainment, as components of cognitive reserve, may modify the relationship between the pathological hallmarks and cognition in Alzheimer's disease (AD). We examined whether exposure of a Tg2576 transgenic mouse model of AD to environmental enrichment (EE) at a specific period during the amyloidogenic process favored the establishment of a cognitive reserve. We found that exposure to EE during early adulthood of Tg2576 mice--before amyloidogenesis has started--reduced the severity of AD-related cognitive deficits more efficiently than exposure later in life, when the pathology is already present. Interestingly, early-life exposure to EE, while slightly reducing forebrain surface covered by amyloid plaques, did not significantly impact aberrant inhibitory remodeling in the hippocampus of Tg2576 mice. Thus, transient early-life exposure to EE exerts long-lasting protection against cognitive impairment during AD pathology. In addition, these data define the existence of a specific life time frame during which stimulatory activity most efficiently builds a cognitive reserve, limiting AD progression and favoring successful aging.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Amiloidosis/etiología , Amiloidosis/prevención & control , Trastornos del Conocimiento/enfermería , Ambiente , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Calbindinas , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Humanos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Neuropéptido Y/metabolismo , Reconocimiento en Psicología/fisiología , Proteína G de Unión al Calcio S100/metabolismo , Conducta Espacial/fisiología , Estadísticas no Paramétricas
18.
Proc Natl Acad Sci U S A ; 109(42): E2895-903, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22869752

RESUMEN

In light of the rising prevalence of Alzheimer's disease (AD), new strategies to prevent, halt, and reverse this condition are needed urgently. Perturbations of brain network activity are observed in AD patients and in conditions that increase the risk of developing AD, suggesting that aberrant network activity might contribute to AD-related cognitive decline. Human amyloid precursor protein (hAPP) transgenic mice simulate key aspects of AD, including pathologically elevated levels of amyloid-ß peptides in brain, aberrant neural network activity, remodeling of hippocampal circuits, synaptic deficits, and behavioral abnormalities. Whether these alterations are linked in a causal chain remains unknown. To explore whether hAPP/amyloid-ß-induced aberrant network activity contributes to synaptic and cognitive deficits, we treated hAPP mice with different antiepileptic drugs. Among the drugs tested, only levetiracetam (LEV) effectively reduced abnormal spike activity detected by electroencephalography. Chronic treatment with LEV also reversed hippocampal remodeling, behavioral abnormalities, synaptic dysfunction, and deficits in learning and memory in hAPP mice. Our findings support the hypothesis that aberrant network activity contributes causally to synaptic and cognitive deficits in hAPP mice. LEV might also help ameliorate related abnormalities in people who have or are at risk for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Anticonvulsivantes/farmacología , Trastornos del Conocimiento/tratamiento farmacológico , Cognición/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Piracetam/análogos & derivados , Sinapsis/efectos de los fármacos , Enfermedad de Alzheimer/complicaciones , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Análisis de Varianza , Animales , Anticonvulsivantes/sangre , Anticonvulsivantes/uso terapéutico , Western Blotting , Trastornos del Conocimiento/etiología , Electroencefalografía , Humanos , Inmunohistoquímica , Levetiracetam , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Red Nerviosa/fisiopatología , Piracetam/sangre , Piracetam/farmacología , Piracetam/uso terapéutico
19.
Cell ; 149(3): 708-21, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541439

RESUMEN

Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Interneuronas/metabolismo , Aprendizaje , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.1 , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Sinapsis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...