Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 380(3): 532-47, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18565343

RESUMEN

GidA is a flavin-adenine-dinucleotide (FAD)-binding protein that is conserved among bacteria and eucarya. Together with MnmE, it is involved in the addition of a carboxymethylaminomethyl group to the uridine base in the wobble position (nucleotide 34) of tRNAs that read split codon boxes. Here, we report the crystal structures of the GidA proteins from both Escherichia coli and Chlorobium tepidum. The structures show that the protein can be divided into three domains: a first FAD-binding domain showing the classical Rossmann fold, a second alpha/beta domain inserted between two strands of the Rossmann fold, and an alpha-helical C-terminal domain. The domain inserted into the Rossmann fold displays structural similarity to the nicotinamide-adenine-dinucleotide-(phosphate)-binding domains of phenol hydroxylase and 3-hydroxy-3-methylglutaryl-CoA reductase, and, correspondingly, we show that GidA binds NADH with high specificity as an initial donor of electrons. GidA behaves as a homodimer in solution. As revealed by the crystal structures, homodimerization is mediated via both the FAD-binding domain and the NADH-binding domain. Finally, a large patch of highly conserved, positively charged residues on the surface of GidA leading to the FAD-binding site suggests a tRNA-binding surface. We propose a model for the interaction between GidA and MnmE, which is supported by site-directed mutagenesis. Our data suggest that this interaction is modulated and potentially regulated by the switch function of the G domain of MnmE.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , ARN de Transferencia/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Chlorobium/química , Cristalografía por Rayos X , Dimerización , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Histidina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , NADP/metabolismo , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN de Transferencia/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
2.
Eur J Med Chem ; 43(2): 315-26, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17582660

RESUMEN

Nucleoside hydrolase (NH) is a key enzyme in the purine salvage pathway. The purine specificity of the IAG-NH from Trypanosoma vivax is at least in part due to cation-pi-stacking interactions. Guanidinium ions can be involved in cation-pi-stacking interactions, therefore a series of guanidino-alkyl-ribitol derivatives were synthesized in order to examine the binding affinity of these compounds towards the target enzyme. The compounds show moderate to good inhibiting activity towards the IAG-NH from T. vivax.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , N-Glicosil Hidrolasas/antagonistas & inhibidores , Animales , Evaluación Preclínica de Medicamentos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , N-Glicosil Hidrolasas/química , Espectrometría de Masa por Ionización de Electrospray , Trypanosoma vivax/enzimología
3.
Bioorg Med Chem Lett ; 17(9): 2523-6, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17317181

RESUMEN

A range of novel 1,2,3-triazolylalkylribitol derivatives were synthesized and evaluated as nucleoside hydrolase inhibitors. The most active compound (11a) has low micromolar potency and is structurally diverse from previously reported nucleoside hydrolase inhibitors, which, along with the simplicity of the chemistry involved in its synthesis, makes it a good lead for the further development of novel nucleoside hydrolase inhibitors.


Asunto(s)
Química Farmacéutica/métodos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , N-Glicosil Hidrolasas/antagonistas & inhibidores , Ribitol/análogos & derivados , Ribitol/química , Triazoles/química , Animales , Diseño de Fármacos , Cinética , Modelos Químicos , Conformación Molecular , Trypanosoma brucei brucei/enzimología
4.
J Mol Biol ; 359(2): 331-46, 2006 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-16630632

RESUMEN

Nucleoside hydrolases cleave the N-glycosidic bond of ribonucleosides. Crystal structures of the purine-specific nucleoside hydrolase from Trypanosoma vivax have previously been solved in complex with inhibitors or a substrate. All these structures show the dimeric T. vivax nucleoside hydrolase with an "open" active site with a highly flexible loop (loop 2) in its vicinity. Here, we present the crystal structures of the T. vivax nucleoside hydrolase with both soaked (TvNH-ImmH(soak)) and co-crystallised (TvNH-ImmH(co)) transition-state inhibitor immucillin H (ImmH or (1S)-1-(9-deazahypoxanthin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol) to 2.1 A and 2.2 A resolution, respectively. In the co-crystallised structure, loop 2 is ordered and folds over the active site, establishing previously unobserved enzyme-inhibitor interactions. As such this structure presents the first complete picture of a purine-specific NH active site, including leaving group interactions. In the closed active site, a water channel of highly ordered water molecules leads out from the N7 of the nucleoside toward bulk solvent, while Trp260 approaches the nucleobase in a tight parallel stacking interaction. Together with mutagenesis results, this structure rules out a mechanism of leaving group activation by general acid catalysis, as proposed for base-aspecific nucleoside hydrolases. Instead, the structure is consistent with the previously proposed mechanism of leaving group protonation in the T. vivax nucleoside hydrolase where aromatic stacking with Trp260 and an intramolecular O5'-H8C hydrogen bond increase the pKa of the N7 sufficiently to allow protonation by solvent. A mechanism that couples loop closure to the positioning of active site residues is proposed based on a comparison of the soaked structure with the co-crystallized structure. Interestingly, the dimer interface area increases by 40% upon closure of loop 2, with loop 1 of one subunit interacting with loop 2 of the other subunit, suggesting a relationship between the dimeric form of the enzyme and its catalytic activity.


Asunto(s)
N-Glicosil Hidrolasas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Trypanosoma vivax/enzimología , Animales , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular , N-Glicosil Hidrolasas/antagonistas & inhibidores , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/metabolismo , Pliegue de Proteína , Nucleósidos de Purina , Pirimidinonas/metabolismo , Pirroles/metabolismo
5.
J Mol Biol ; 307(5): 1363-79, 2001 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-11292348

RESUMEN

The purine salvage pathway of parasitic protozoa is currently considered as a target for drug development because these organisms cannot synthesize purines de novo. Insight into the structure and mechanism of the involved enzymes can aid in the development of potent inhibitors, leading to new curative drugs. Nucleoside hydrolases are key enzymes in the purine salvage pathway of Trypanosomatidae, and they are especially attractive because they have no equivalent in mammalian cells. We cloned, expressed and purified a nucleoside hydrolase from Trypanosoma vivax. The substrate activity profile establishes the enzyme to be a member of the inosine-adenosine-guanosine-preferring nucleoside hydrolases (IAG-NH). We solved the crystal structure of the enzyme at 1.6 A resolution using MAD techniques. The complex of the enzyme with the substrate analogue 3-deaza-adenosine is presented. These are the first structures of an IAG-NH reported in the literature. The T. vivax IAG-NH is a homodimer, with each subunit consisting of ten beta-strands, 12 alpha-helices and three small 3(10)-helices. Six of the eight strands of the central beta-sheet form a motif resembling the Rossmann fold. Superposition of the active sites of this IAG-NH and the inosine-uridine-preferring nucleoside hydrolase (IU-NH) of Crithidia fasciculata shows the molecular basis of the different substrate specificity distinguishing these two classes of nucleoside hydrolases. An "aromatic stacking network" in the active site of the IAG-NH, absent from the IU-NH, imposes the purine specificity. Asp10 is the proposed general base in the reaction mechanism, abstracting a proton from a nucleophilic water molecule. Asp40 (replaced by Asn39 in the IU-NH) is positioned appropriately to act as a general acid and to protonate the purine leaving group. The second general acid, needed for full enzymatic activity, is probably part of a flexible loop located in the vicinity of the active site.


Asunto(s)
N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/metabolismo , Trypanosoma vivax/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Crithidia fasciculata/enzimología , Cristalografía por Rayos X , Dimerización , Diseño de Fármacos , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , N-Glicosil Hidrolasas/antagonistas & inhibidores , N-Glicosil Hidrolasas/genética , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato , Trypanosoma vivax/genética , Tubercidina/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA