Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Biomedicines ; 12(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38790958

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted global healthcare, underscoring the importance of exploring the virus's effects on infected individuals beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the gut, thereby altering the gut microbiota. This study aimed to analyze the gut microbiota composition differences between COVID-19 patients experiencing mild and severe symptoms. We conducted 16S rRNA metagenomic sequencing on fecal samples from 49 mild and 43 severe COVID-19 cases upon hospital admission. Our analysis identified a differential abundance of specific bacterial species associated with the severity of the disease. Severely affected patients showed an association with Enterococcus faecium, Akkermansia muciniphila, and others, while milder cases were linked to Faecalibacterium prausnitzii, Alistipes putredinis, Blautia faecis, and additional species. Furthermore, a network analysis using SPIEC-EASI indicated keystone taxa and highlighted structural differences in bacterial connectivity, with a notable disruption in the severe group. Our study highlights the diverse impacts of SARS-CoV-2 on the gut microbiome among both mild and severe COVID-19 patients, showcasing a spectrum of microbial responses to the virus. Importantly, these findings align, to some extent, with observations from other studies on COVID-19 gut microbiomes, despite variations in methodologies. The findings from this study, based on retrospective data, establish a foundation for future prospective research to confirm the role of the gut microbiome as a predictive biomarker for the severity of COVID-19.

2.
Front Nutr ; 11: 1362529, 2024.
Article En | MEDLINE | ID: mdl-38577158

Sweet-tasting proteins (SPs) are proteins of plant origin initially isolated from tropical fruits. They are thousands of times sweeter than sucrose and most artificial sweeteners. SPs are a class of proteins capable of causing a sweet taste sensation in humans when interacting with the T1R2/T1R3 receptor. SP thaumatin has already been introduced in the food industry in some countries. Other SPs, such as monellin and brazzein, are promising products. An important stage in researching SPs, in addition to confirming the absence of toxicity, mutagenicity, oncogenicity, and allergenic effects, is studying their influence on gut microbiota. In this paper we describe changes in the composition of rat gut microbiota after six months of consuming one of two recombinant SPs-brazzein or monellin. A full length 16S gene sequencing method was used for DNA library barcoding. The MaAsLin2 analysis results showed noticeable fluctuations in the relative abundances of Anaerocella delicata in brazzein-fed rat microbiota, and of Anaerutruncus rubiinfantis in monellin-fed rat microbiota, which, however, did not exceed the standard deviation. The sucrose-fed group was associated with an increase in the relative abundance of Faecalibaculum rodentium, which may contribute to obesity. Overall, prolonged consumption of the sweet proteins brazzein and monellin did not significantly change rat microbiota and did not result in the appearance of opportunistic microbiota. This provides additional evidence for the safety of these potential sweeteners.

3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article En | MEDLINE | ID: mdl-36835449

In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In this study, we present a description of the first K. pneumoniae phage from the Zobellviridae family. The vB_KpnP_Klyazma podovirus, which forms translucent halos around the plaques, was isolated from river water. The phage genome is composed of 82 open reading frames, which are divided into two clusters located on opposite strands. Phylogenetic analysis revealed that the phage belongs to the Zobellviridae family, although its identity with the closest member of this family was not higher than 5%. The bacteriophage demonstrated lytic activity against all (n = 11) K. pneumoniae strains with the KL20 capsule type, but only the host strain was lysed effectively. The receptor-binding protein of the phage was identified as a polysaccharide depolymerase with a pectate lyase domain. The recombinant depolymerase protein showed concentration-dependent activity against all strains with the KL20 capsule type. The ability of a recombinant depolymerase to cleave bacterial capsular polysaccharides regardless of a phage's ability to successfully infect a particular strain holds promise for the possibility of using depolymerases in antimicrobial therapy, even though they only make bacteria sensitive to environmental factors, rather than killing them directly.


Bacteriophages , Podoviridae , Bacteriophages/genetics , Klebsiella pneumoniae/genetics , Phylogeny , Genome, Viral , Podoviridae/genetics , Recombinant Proteins/genetics
4.
Front Plant Sci ; 14: 1077301, 2023.
Article En | MEDLINE | ID: mdl-36818838

Background: RAPID ALKALINIZATION FACTOR (RALFs) are cysteine-rich peptides that regulate multiple physiological processes in plants. This peptide family has considerably expanded during land plant evolution, but the role of ancient RALFs in modulating stress responses is unknown.Results: Here, we used the moss Physcomitrium patens as a model to gain insight into the role of RALF peptides in the coordination of plant growth and stress response in non-vascular plants. The quantitative proteomic analysis revealed concerted downregulation of M6 metalloprotease and some membrane proteins, including those involved in stress response, in PpRALF1, 2 and 3 knockout (KO) lines. The subsequent analysis revealed the role of PpRALF3 in growth regulation under abiotic and biotic stress conditions, implying the importance of RALFs in responding to various adverse conditions in bryophytes. We found that knockout of the PpRALF2 and PpRALF3 genes resulted in increased resistance to bacterial and fungal phytopathogens, Pectobacterium carotovorum and Fusarium solani, suggesting the role of these peptides in negative regulation of the immune response in P. patens. Comparing the transcriptomes of PpRALF3 KO and wild-type plants infected by F. solani showed that the regulation of genes in the phenylpropanoid pathway and those involved in cell wall modification and biogenesis was different in these two genotypes. Conclusion: Thus, our study sheds light on the function of the previously uncharacterized PpRALF3 peptide and gives a clue to the ancestral functions of RALF peptides in plant stress response.

5.
Molecules ; 27(23)2022 Nov 30.
Article En | MEDLINE | ID: mdl-36500469

The new homochiral 1D metal-organic coordination polymer [Cu2(EDPB)•H2O]n was synthesized starting from the original 3,3'-ethyne-1,2-diylbis[6-(L-prolylamino)benzoic acid] (H4EDPB). The unique crystal structure of the new compound was established by powder X-ray diffraction. The [Cu2(EDPB)•H2O]n system shows catalytic activity and enantioselectivity in a Henry reaction of p-nitrobenzaldehyde with nitromethane.


Copper , Polymers , Polymers/chemistry , Molecular Structure , Copper/chemistry , Metals , X-Ray Diffraction
6.
Microorganisms ; 10(8)2022 Aug 21.
Article En | MEDLINE | ID: mdl-36014100

To date, transcriptomics have been widely and successfully employed to study gene expression in different cell growth phases of bacteria. Since bifidobacteria represent a major component of the gut microbiota of a healthy human that is associated with numerous health benefits for the host, it is important to study them using transcriptomics. In this study, we applied the RNA-Seq technique to study global gene expression of B. longum at different growth phases in order to better understand the response of bifidobacterial cells to the specific conditions of the human gut. We have shown that in the lag phase, ABC transporters, whose function may be linked to active substrate utilization, are increasingly expressed due to preparation for cell division. In the exponential phase, the functions of activated genes include synthesis of amino acids (alanine and arginine), energy metabolism (glycolysis/gluconeogenesis and nitrogen metabolism), and translation, all of which promote active cell division, leading to exponential growth of the culture. In the stationary phase, we observed a decrease in the expression of genes involved in the control of the rate of cell division and an increase in the expression of genes involved in defense-related metabolic pathways. We surmise that the latter ensures cell survival in the nutrient-deprived conditions of the stationary growth phase.

7.
Front Microbiol ; 13: 817024, 2022.
Article En | MEDLINE | ID: mdl-35308348

G-quadruplexes (G4s) are non-canonical DNA structures that could be considered as potential therapeutic targets for antimicrobial compounds, also known as G4-stabilizing ligands. While some of these ligands are shown in vitro to have a stabilizing effect, the precise mechanism of antibacterial action has not been fully investigated. Here, we employed genome-wide RNA-sequencing to analyze the response of Mycobacterium smegmatis to inhibitory concentrations of BRACO-19 and TMPyP4 G4 ligands. The expression profile changed (FDR < 0.05, log2FC > |1|) for 822 (515↑; 307↓) genes in M. smegmatis in response to BRACO-19 and for 680 (339↑; 341↓) genes in response to TMPyP4. However, the analysis revealed no significant ligand-induced changes in the expression levels of G4-harboring genes, genes under G4-harboring promoters, or intergenic regions located on mRNA-like or template strands. Meanwhile, for the BRACO-19 ligand, we found significant changes in the replication and repair system genes, as well as in iron metabolism genes which is, undoubtedly, evidence of the induced stress. For the TMPyP4 compound, substantial changes were found in transcription factors and the arginine biosynthesis system, which may indicate multiple biological targets for this compound.

8.
Viruses ; 14(3)2022 03 09.
Article En | MEDLINE | ID: mdl-35336974

In light of the ever-increasing number of multidrug-resistant bacteria worldwide, bacteriophages are becoming a valid alternative to antibiotics; therefore, their interactions with host bacteria must be thoroughly investigated. Here, we report genome-wide transcriptional changes in a clinical Staphylococcus aureus SA515 strain for three time points after infection with the vB_SauM-515A1 kayvirus. Using an RNA sequencing approach, we identify 263 genes that were differentially expressed (DEGs) between phage-infected and uninfected host samples. Most of the DEGs were identified at an early stage of phage infection and were mainly involved in nucleotide and amino acid metabolism, as well as in cell death prevention. At the subsequent infection stages, the vast majority of DEGs were upregulated. Interestingly, 39 upregulated DEGs were common between the 15th and 30th minutes post-infection, and a substantial number of them belonged to the prophages. Furthermore, some virulence factors were overexpressed at the late infection stage, which necessitates more stringent host strain selection requirements for further use of bacteriophages for therapeutic purposes. Thus, this work allows us to better understand the influence of kayviruses on the metabolic systems of S. aureus and contributes to a better comprehension of phage therapy.


Bacteriophages , Staphylococcal Infections , Bacteriophages/genetics , Genome, Viral , Humans , Staphylococcal Infections/microbiology , Staphylococcus Phages/genetics , Staphylococcus aureus/genetics , Transcriptome
9.
Glycoconj J ; 39(3): 393-411, 2022 06.
Article En | MEDLINE | ID: mdl-35166992

The Gram-negative bacterium Pseudomonas aeruginosa simultaneously expresses two O-antigenic glycoforms. While the O-specific antigen (OSA) is variable in composition, the common polysaccharide antigen (CPA) is highly conserved and is composed of a homopolymer of D-rhamnose (D-Rha) in trisaccharide repeating units [D-Rhaα1-2-D-Rhaα1-3-D-Rhaɑ1-3]n. We have previously reported that α3-D-Rha-transferase WbpZ transfers a D-Rha residue from GDP-D-Rha to D-GlcNAcα-O-PO3-PO3-(CH2)11-O-phenyl. Genes encoding two more D-Rha-transferases are found in the O antigen gene cluster (wbpX and wbpY). In this study we showed that WbpX and WbpY recombinantly expressed in E. coli differ in their donor and acceptor specificities and have properties of GT-B folded enzymes of the GT4 glycosyltransferase family. NMR spectroscopic analysis of the WbpY reaction product showed that WbpY transferred one D-Rha residue in α1-3 linkage to synthetic D-Rhaα1-3-D-GlcNAcα-O-PO3-PO3-(CH2)11-O-phenyl acceptor. WbpX synthesized several products that contained D-Rha in both α1-2 and α1-3 linkages. Mass spectrometry indicated that the mixture of WbpX and WbpY efficiently catalyzed the synthesis of D-Rha oligomers in a non-processive mechanism. Since O antigens are virulence factors, these findings open the door to advancing technology for antibacterial drug discovery and vaccine development.


O Antigens , Pseudomonas aeruginosa , Escherichia coli/genetics , Glycosyltransferases/genetics , Lipopolysaccharides/chemistry , O Antigens/chemistry , Pseudomonas aeruginosa/genetics , Rhamnose
10.
J Med Microbiol ; 71(1)2022 Jan.
Article En | MEDLINE | ID: mdl-35037614

Introduction. Mycoplasma hominis is a bacterium belonging to the class Mollicutes. It causes acute and chronic infections of the urogenital tract. The main features of this bacterium are an absence of cell wall and a reduced genome size (517-622 protein-encoding genes). Previously, we have isolated morphologically unknown M. hominis colonies called micro-colonies (MCs) from the serum of patients with inflammatory urogenital tract infection.Hypothesis. MCs are functionally different from the typical colonies (TCs) in terms of metabolism and cell division.Aim. To determine the physiological differences between MCs and TCs of M. hominis and elucidate the pathways of formation and growth of MCs by a comparative proteomic analysis of these two morphological forms.Methodology. LC-MS proteomic analysis of TCs and MCs using an Ultimate 3000 RSLC nanoHPLC system connected to a QExactive Plus mass spectrometer.Results. The study of the proteomic profiles of M. hominis colonies allowed us to reconstruct their energy metabolism pathways. In addition to the already known pentose phosphate and arginine deamination pathways, M. hominis can utilise ribose phosphate and deoxyribose phosphate formed by nucleoside catabolism as energy sources. Comparative proteomic HPLC-MS analysis revealed that the proteomic profiles of TCs and MCs were different. We assume that MC cells preferably utilised deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Utilisation of deoxyribonucleosides is less efficient as compared with that of ribonucleosides and arginine in terms of energy production. Thymidine phosphorylase DeoA is one of the key enzymes of deoxyribonucleosides utilisation. We obtained a DeoA overexpressing mutant that exhibited a phenotype similar to that of MCs, which confirmed our hypothesis.Conclusion. In addition to the two known pathways for energy production (arginine deamination and the pentose phosphate pathway) M. hominis can use deoxyribonucleosides and ribonucleosides. MC cells demonstrate a reorganisation of energy metabolism: unlike TC cells, they preferably utilise deoxyribonucleosides, particularly thymidine, as an energy source rather than arginine or ribonucleosides. Thus MC cells enter a state of energy starvation, which helps them to survive under stress, and in particular, to be resistant to antibiotics.


Mycoplasma hominis , Proteome , Thymidine/metabolism , Arginine , Humans , Mycoplasma Infections , Mycoplasma hominis/genetics , Mycoplasma hominis/metabolism , Phenotype , Phosphates , Ribonucleosides
11.
Microb Cell Fact ; 20(1): 226, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34930242

BACKGROUND: All living organisms have developed during evolution complex time-keeping biological clocks that allowed them to stay attuned to their environments. Circadian rhythms cycle on a near 24 h clock. These encompass a variety of changes in the body ranging from blood hormone levels to metabolism, to the gut microbiota composition and others. The gut microbiota, in return, influences the host stress response and the physiological changes associated with it, which makes it an important determinant of health. Lactobacilli are traditionally consumed for their prophylactic and therapeutic benefits against various diseases, namely, the inflammatory bowel syndrome, and even emerged recently as promising psychobiotics. However, the potential role of lactobacilli in the normalization of circadian rhythms has not been addressed. RESULTS: Two-month-old male rats were randomly divided into three groups and housed under three different light/dark cycles for three months: natural light, constant light and constant darkness. The strain Levilactobacillus brevis 47f was administered to rats at a dose of 0.5 ml per rat for one month and The rats were observed for the following two months. As a result, we identified the biomarkers associated with intake of L. brevis 47f. Changing the light regime for three months depleted the reserves of the main buffer in the cell-reduced glutathione. Intake of L. brevis 47f for 30 days restored cellular reserves of reduced glutathione and promoted redox balance. Our results indicate that the levels of urinary catecholamines correlated with light/dark cycles and were influenced by intake of L. brevis 47f. The gut microbiota of rats was also influenced by these factors. L. brevis 47f intake was associated with an increase in the relative abundance of Faecalibacterium and Roseburia and a decrease in the relative abundance of Prevotella and Bacteroides. CONCLUSIONS: The results of this study show that oral administration of L. brevis 47f, for one month, to rats housed under abnormal lightning conditions (constant light or constant darkness) normalized their physiological parameters and promoted the gut microbiome's balance.


Circadian Rhythm/physiology , Darkness , Gastrointestinal Microbiome/physiology , Levilactobacillus brevis/physiology , Light , Animals , Gastrointestinal Microbiome/genetics , Male , Probiotics/administration & dosage , Rats
12.
Front Microbiol ; 12: 669618, 2021.
Article En | MEDLINE | ID: mdl-34434173

Antibiotic resistance is a major public health concern in many countries worldwide. The rapid spread of multidrug-resistant (MDR) bacteria is the main driving force for the development of novel non-antibiotic antimicrobials as a therapeutic alternative. Here, we isolated and characterized three virulent bacteriophages that specifically infect and lyse MDR Klebsiella pneumoniae with K23 capsule type. The phages belonged to the Autographiviridae (vB_KpnP_Dlv622) and Myoviridae (vB_KpnM_Seu621, KpS8) families and contained highly similar receptor-binding proteins (RBPs) with polysaccharide depolymerase enzymatic activity. Based on phylogenetic analysis, a similar pattern was also noted for five other groups of depolymerases, specific against capsule types K1, K30/K69, K57, K63, and KN2. The resulting recombinant depolymerases Dep622 (phage vB_KpnP_Dlv622) and DepS8 (phage KpS8) demonstrated narrow specificity against K. pneumoniae with capsule type K23 and were able to protect Galleria mellonella larvae in a model infection with a K. pneumoniae multidrug-resistant strain. These findings expand our knowledge of the diversity of phage depolymerases and provide further evidence that bacteriophages and phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.

13.
Front Immunol ; 11: 595877, 2020.
Article En | MEDLINE | ID: mdl-33304352

As permanent residents of the normal gut microbiota, bifidobacteria have evolved to adapt to the host's immune response whose priority is to eliminate pathogenic agents. The mechanisms that ensure the survival of commensals during inflammation and maintain the stability of the core component of the normal gut microbiota in such conditions remain poorly understood. We propose a new in vitro approach to study the mechanisms of resistance to immune response factors based on high-throughput sequencing followed by transcriptome analysis. This approach allowed us to detect differentially expressed genes associated with inflammation. In this study, we demonstrated that the presence of the pro-inflammatory cytokines IL-6 and TNFα to the growth medium of the B. longum subsp. longum GT15 strain changes the latter's growth rate insignificantly while affecting the expression of certain genes. We identified these genes and performed a COG and a KEGG pathway enrichment analysis. Using phylogenetic profiling we predicted the operons of genes whose expression was triggered by the cytokines TNFα and IL-6 in vitro. By mapping the transcription start points, we experimentally validated the predicted operons. Thus, in this study, we predicted the genes involved in a putative signaling pathway underlying the mechanisms of resistance to inflammatory factors in bifidobacteria. Since bifidobacteria are a major component of the human intestinal microbiota exhibiting pronounced anti-inflammatory properties, this study is of great practical and scientific relevance.


Bifidobacterium longum , Gene Expression Regulation, Bacterial , Interleukin-6/immunology , Tumor Necrosis Factor-alpha/immunology , Bifidobacterium longum/genetics , Bifidobacterium longum/growth & development , Bifidobacterium longum/immunology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Gene Regulatory Networks , Genome, Bacterial , Inflammation/immunology
14.
Sci Rep ; 10(1): 18612, 2020 10 29.
Article En | MEDLINE | ID: mdl-33122703

Bacteriophage therapy is considered one of the most promising therapeutic approaches against multi-drug resistant bacterial infections. Infections caused by Staphylococcus aureus are very efficiently controlled with therapeutic bacteriophage cocktails, containing a number of individual phages infecting a majority of known pathogenic S. aureus strains. We assessed the contribution of individual bacteriophages comprising a therapeutic bacteriophage cocktail against S. aureus in order to optimize its composition. Two lytic bacteriophages vB_SauM-515A1 (Myoviridae) and vB_SauP-436A (Podoviridae) were isolated from the commercial therapeutic cocktail produced by Microgen (Russia). Host ranges of the phages were established on the panel of 75 S. aureus strains. Phage vB_SauM-515A1 lysed 85.3% and vB_SauP-436A lysed 68.0% of the strains, however, vB_SauP-436A was active against four strains resistant to vB_SauM-515A1, as well as to the therapeutic cocktail per se. Suboptimal results of the therapeutic cocktail application were due to extremely low vB_SauP-436A1 content in this composition. Optimization of the phage titers led to an increase in overall cocktail efficiency. Thus, one of the effective ways to optimize the phage cocktails design was demonstrated and realized by using bacteriophages of different families and lytic spectra.


Bacteriophages/genetics , Myoviridae/genetics , Podoviridae/genetics , Staphylococcal Infections/virology , Staphylococcus Phages/genetics , Staphylococcus aureus/virology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Viral/genetics , Host Specificity/genetics , Humans , Phage Therapy/methods , Russia
15.
Toxins (Basel) ; 12(6)2020 06 12.
Article En | MEDLINE | ID: mdl-32545455

The human gastrointestinal microbiota (HGM) is known for its rich diversity of bacterial species and strains. Yet many studies stop at characterizing the HGM at the family level. This is mainly due to lack of adequate methods for a high-resolution profiling of the HGM. One way to characterize the strain diversity of the HGM is to look for strain-specific functional markers. Here, we propose using type II toxin-antitoxin systems (TAS). To identify TAS systems in the HGM, we previously developed the software TAGMA. This software was designed to detect the TAS systems, MazEF and RelBE, in lactobacilli and bifidobacteria. In this study, we updated the gene catalog created previously and used it to test our software anew on 1346 strains of bacteria, which belonged to 489 species and 49 genera. We also sequenced the genomes of 20 fecal samples and analyzed the results with TAGMA. Although some differences were detected at the strain level, the results showed no particular difference in the bacterial species between our method and other classic analysis software. These results support the use of the updated catalog of genes encoding type II TAS as a useful tool for computer-assisted species and strain characterization of the HGM.


Bacteria/genetics , Gastrointestinal Microbiome , Intestines/microbiology , Metagenome , Metagenomics , Toxin-Antitoxin Systems/genetics , Bacteria/classification , Databases, Genetic , Feces/microbiology , Gene Expression Profiling , Humans , Ribotyping
16.
Glycobiology ; 30(12): 9003-9014, 2020 12 09.
Article En | MEDLINE | ID: mdl-32421169

The O antigen of enterotoxigenic Escherichia coli serotype O117 consists of repeating units with the structure [-D-GalNAcß1-3-L-Rhaα1-4-D-Glcα1-4-D-Galß1-3-D-GalNAcα1-4]n. A related structure is found in E. coli O107 where Glc is replaced by a GlcNAc residue. The O117 and O107 antigen biosynthesis gene clusters are homologous and reveal the presence of four putative glycosyltransferase (GT) genes, wclW, wclX, wclY and wclZ, but the enzymes have not yet been biochemically characterized. We show here that the His6-tagged WclY protein expressed in E. coli Lemo21(DE3) cells is an α1,4-Glc-transferase that transfers Glc to the Gal moiety of Galß1-3GalNAcα-OPO3-PO3-phenoxyundecyl as a specific acceptor and that the diphosphate moiety of this acceptor is required. WclY utilized UDP-Glc, TDP-Glc, ADP-Glc, as well as UDP-GlcNAc, UDP-Gal or UDP-GalNAc as donor substrates, suggesting an unusual broad donor specificity. Activity using GDP-Man suggested the presence of a novel Man-transferase in Lemo21(DE3) cells. Mutations of WclY revealed that both Glu residues of the Ex7E motif within the predicted GT domain are essential for activity. High GlcNAc-transferase (GlcNAc-T) activities of WclY were created by mutating Arg194 to Cys. A triple mutant identical to WclY in E. coli O107 was identified as an α1,4 GlcNAc-T. The characterization of WclY opens the door for the development of antibacterial approaches.


Escherichia coli Proteins/genetics , Glucosyltransferases/genetics , Computational Biology , Glucosyltransferases/metabolism
18.
Pathogens ; 9(2)2020 Feb 18.
Article En | MEDLINE | ID: mdl-32085490

Tuberculosis, caused by Mycobacterium tuberculosis complex bacteria, remains one of the most pressing health problems. Despite the general trend towards reduction of the disease incidence rate, the situation remains extremely tense due to the distribution of the resistant forms. Most often, these strains emerge through the intra-host microevolution of the pathogen during treatment failure. In the present study, the focus was on three serial clinical isolates of Mycobacterium tuberculosis Beijing B0/W148 cluster from one patient with pulmonary tuberculosis, to evaluate their changes in metabolism during anti-tuberculosis therapy. Using whole genome sequencing (WGS), 9 polymorphisms were determined, which occurred in a stepwise or transient manner during treatment and were linked to the resistance (GyrA D94A; inhA t-8a) or virulence. The effect of the inhA t-8a mutation was confirmed on both proteomic and transcriptomic levels. Additionally, the amount of RpsL protein, which is a target of anti-tuberculosis drugs, was reduced. At the systemic level, profound changes in metabolism, linked to the evolution of the pathogen in the host and the effects of therapy, were documented. An overabundance of the FAS-II system proteins (HtdX, HtdY) and expression changes in the virulence factors have been observed at the RNA and protein levels.

19.
Sci Rep ; 9(1): 19255, 2019 12 17.
Article En | MEDLINE | ID: mdl-31848428

Mycobacterium tuberculosis Beijing B0/W148 is one of the most widely distributed clusters in the Russian Federation and in some countries of the former Soviet Union. Recent studies have improved our understanding of the reasons for the "success" of the cluster but this area remains incompletely studied. Here, we focused on the system omics analysis of the RUS_B0 strain belonging to the Beijing B0/W148 cluster. Completed genome sequence of RUS_B0 (CP020093.1) and a collection of WGS for 394 cluster strains were used to describe the main genetic features of the population. In turn, proteome and transcriptome studies allowed to confirm the genomic data and to identify a number of finds that have not previously been described. Our results demonstrated that expression of the whiB6 which contains cluster-specific polymorphism (a151c) increased almost 40 times in RUS_B0. Additionally, the level of ethA transcripts in RUS_B0 was increased by more than 7 times compared to the H37Rv. Start sites for 10 genes were corrected based on the combination of proteomic and transcriptomic data. Additionally, based on the omics approach, we identified 5 new genes. In summary, our analysis allowed us to summarize the available results and also to obtain fundamentally new data.


Bacterial Proteins , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genotype , Polymorphism, Genetic , Proteome , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Gene Expression Profiling , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Proteome/genetics , Proteome/metabolism , Proteomics
20.
J Biol Chem ; 294(42): 15237-15256, 2019 10 18.
Article En | MEDLINE | ID: mdl-31506299

Group A carbohydrate (GAC) is a bacterial peptidoglycan-anchored surface rhamnose polysaccharide (RhaPS) that is essential for growth of Streptococcus pyogenes and contributes to its ability to infect the human host. In this study, using molecular and synthetic biology approaches, biochemistry, radiolabeling techniques, and NMR and MS analyses, we examined the role of GacB, encoded in the S. pyogenes GAC gene cluster, in the GAC biosynthesis pathway. We demonstrate that GacB is the first characterized α-d-GlcNAc-ß-1,4-l-rhamnosyltransferase that synthesizes the committed step in the biosynthesis of the GAC virulence determinant. Importantly, the substitution of S. pyogenes gacB with the homologous gene from Streptococcus agalactiae (Group B Streptococcus), Streptococcus equi subsp. zooepidemicus (Group C Streptococcus), Streptococcus dysgalactiae subsp. equisimilis (Group G Streptococcus), or Streptococcus mutans complemented the GAC biosynthesis pathway. These results, combined with those from extensive in silico studies, reveal a common phylogenetic origin of the genes required for this priming step in >40 pathogenic species of the Streptococcus genus, including members from the Lancefield Groups B, C, D, E, G, and H. Importantly, this priming step appears to be unique to streptococcal ABC transporter-dependent RhaPS biosynthesis, whereas the Wzx/Wzy-dependent streptococcal capsular polysaccharide pathways instead require an α-d-Glc-ß-1,4-l-rhamnosyltransferase. The insights into the RhaPS priming step obtained here open the door to targeting the early steps of the group carbohydrate biosynthesis pathways in species of the Streptococcus genus of high clinical and veterinary importance.


Antigens, Bacterial/biosynthesis , Bacterial Proteins/metabolism , Hexosyltransferases/metabolism , Polysaccharides, Bacterial/biosynthesis , Streptococcal Infections/microbiology , Streptococcus pyogenes/enzymology , Bacterial Proteins/genetics , Hexosyltransferases/genetics , Multigene Family , Phylogeny , Polysaccharides, Bacterial/genetics , Rhamnose/metabolism , Streptococcus/classification , Streptococcus/enzymology , Streptococcus/genetics , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism
...