Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(9): 4191-4207, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37026479

RESUMEN

Adenosine deaminase acting on RNA ADAR1 promotes A-to-I conversion in double-stranded and structured RNAs. ADAR1 has two isoforms transcribed from different promoters: cytoplasmic ADAR1p150 is interferon-inducible while ADAR1p110 is constitutively expressed and primarily localized in the nucleus. Mutations in ADAR1 cause Aicardi - Goutières syndrome (AGS), a severe autoinflammatory disease associated with aberrant IFN production. In mice, deletion of ADAR1 or the p150 isoform leads to embryonic lethality driven by overexpression of interferon-stimulated genes. This phenotype is rescued by deletion of the cytoplasmic dsRNA-sensor MDA5 indicating that the p150 isoform is indispensable and cannot be rescued by ADAR1p110. Nevertheless, editing sites uniquely targeted by ADAR1p150 remain elusive. Here, by transfection of ADAR1 isoforms into ADAR-less mouse cells we detect isoform-specific editing patterns. Using mutated ADAR variants, we test how intracellular localization and the presence of a Z-DNA binding domain-α affect editing preferences. These data show that ZBDα only minimally contributes to p150 editing-specificity while isoform-specific editing is primarily directed by the intracellular localization of ADAR1 isoforms. Our study is complemented by RIP-seq on human cells ectopically expressing tagged-ADAR1 isoforms. Both datasets reveal enrichment of intronic editing and binding by ADAR1p110 while ADAR1p150 preferentially binds and edits 3'UTRs.


Asunto(s)
Adenosina Desaminasa , Interferones , Edición de ARN , ARN Bicatenario , Animales , Humanos , Ratones , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Interferones/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Bicatenario/genética
2.
Am J Physiol Cell Physiol ; 323(5): C1496-C1511, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36036447

RESUMEN

Adenosine deaminases acting on RNAs convert adenosines (A) to inosines (I) in structured or double-stranded RNAs. In mammals, this process is widespread. In the human transcriptome, more than a million different sites have been identified that undergo an ADAR-mediated A-to-I exchange Inosines have an altered base pairing potential due to the missing amino group when compared to the original adenosine. Consequently, inosines prefer to base pair with cytosines but can also base pair with uracil or adenine. This altered base pairing potential not only affects protein decoding at the ribosome but also influences the folding of RNAs and the proteins that can associate with it. Consequently, an A to I exchange can also affect RNA processing and turnover (Nishikura K. Annu Rev Biochem 79: 321-349, 2010; Brümmer A, Yang Y, Chan TW, Xiao X. Nat Commun 8: 1255, 2017). All of these events will interfere with gene expression and therefore, can also affect cellular and organismic physiology. As double-stranded RNAs are a hallmark of viral pathogens RNA-editing not only affects RNA-processing, coding, and gene expression but also controls the antiviral response to double-stranded RNAs. Most interestingly, recent advances in our understanding of ADAR enzymes reveal multiple layers of regulation by which ADARs can control antiviral programs. In this review, we focus on the recoding of mRNAs where the altered translation products lead to physiological changes. We also address recent advances in our understanding of the multiple layers of antiviral responses and innate immune modulations mediated by ADAR1.


Asunto(s)
Edición de ARN , Proteínas de Unión al ARN , Animales , Humanos , Edición de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Inosina/genética , Inosina/metabolismo , ARN Bicatenario , Adenosina/genética , Adenosina/metabolismo , ARN Viral , Mamíferos/genética , Mamíferos/metabolismo , Antivirales
3.
Genes (Basel) ; 12(7)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34356042

RESUMEN

RNA-editing by adenosine deaminases acting on RNA (ADARs) converts adenosines to inosines in structured RNAs. Inosines are read as guanosines by most cellular machineries. A to I editing has two major functions: first, marking endogenous RNAs as "self", therefore helping the innate immune system to distinguish repeat- and endogenous retrovirus-derived RNAs from invading pathogenic RNAs; and second, recoding the information of the coding RNAs, leading to the translation of proteins that differ from their genomically encoded versions. It is obvious that these two important biological functions of ADARs will differ during development, in different tissues, upon altered physiological conditions or after exposure to pathogens. Indeed, different levels of ADAR-mediated editing have been observed in different tissues, as a response to altered physiology or upon pathogen exposure. In this review, we describe the dynamics of A to I editing and summarize the known and likely mechanisms that will lead to global but also substrate-specific regulation of A to I editing.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Adenosina/metabolismo , Inosina/metabolismo , Edición de ARN , Desaminación , Humanos , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Nat Commun ; 11(1): 5104, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037214

RESUMEN

Many intestinal pathogens, including Clostridioides difficile, use mucus-derived sugars as crucial nutrients in the gut. Commensals that compete with pathogens for such nutrients are therefore ecological gatekeepers in healthy guts, and are attractive candidates for therapeutic interventions. Nevertheless, there is a poor understanding of which commensals use mucin-derived sugars in situ as well as their potential to impede pathogen colonization. Here, we identify mouse gut commensals that utilize mucus-derived monosaccharides within complex communities using single-cell stable isotope probing, Raman-activated cell sorting and mini-metagenomics. Sequencing of cell-sorted fractions reveals members of the underexplored family Muribaculaceae as major mucin monosaccharide foragers, followed by members of Lachnospiraceae, Rikenellaceae, and Bacteroidaceae families. Using this information, we assembled a five-member consortium of sialic acid and N-acetylglucosamine utilizers that impedes C. difficile's access to these mucosal sugars and impairs pathogen colonization in antibiotic-treated mice. Our findings underscore the value of targeted approaches to identify organisms utilizing key nutrients and to rationally design effective probiotic mixtures.


Asunto(s)
Clostridioides difficile/patogenicidad , Microbioma Gastrointestinal/fisiología , Monosacáridos/metabolismo , Acetilglucosamina/metabolismo , Animales , Antibacterianos , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Separación Celular/métodos , Clostridioides difficile/genética , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Deuterio , Femenino , Mucinas Gástricas/química , Mucinas Gástricas/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Metagenoma , Ratones Endogámicos C57BL , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Espectrometría Raman
5.
PLoS One ; 14(4): e0200968, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31039163

RESUMEN

Adenosine (A) to inosine (I) RNA editing is a hydrolytic deamination reaction catalyzed by the adenosine deaminase (ADAR) enzyme acting on double-stranded RNA. This posttranscriptional process diversifies a plethora of transcripts, including coding and noncoding RNAs. Interestingly, few studies have been carried out to determine the role of RNA editing in vascular disease. The aim of this study was to determine the potential role of ADARs in congenital heart disease. Strong downregulation of ADAR2 and increase in ADAR1 expression was observed in blood samples from congenital heart disease (CHD) patients. The decrease in expression of ADAR2 was in line with its downregulation in ventricular tissues of dilated cardiomyopathy patients. To further decipher the plausible regulatory pathway of ADAR2 with respect to heart physiology, miRNA profiling of ADAR2 was performed on tissues from ADAR2-/- mouse hearts. Downregulation of miRNAs (miR-29b, miR-405, and miR-19) associated with cardiomyopathy and cardiac fibrosis was observed. Moreover, the upregulation of miR-29b targets COL1A2 and IGF1, indicated that ADAR2 might be involved in cardiac myopathy. The ADAR2 target vascular development associated protein-coding gene filamin B (FLNB) was selected. The editing levels of FLNB were dramatically reduced in ADAR2-/- mice; however, no observable changes in FLNB expression were noted in ADAR2-/- mice compared to wild-type mice. This study proposes that sufficient ADAR2 enzyme activity might play a vital role in preventing cardiovascular defects.


Asunto(s)
Adenosina Desaminasa/biosíntesis , Regulación Enzimológica de la Expresión Génica , Cardiopatías Congénitas/sangre , ARN Mensajero/sangre , Proteínas de Unión al ARN/biosíntesis , Adenosina Desaminasa/genética , Adolescente , Animales , Niño , Preescolar , Colágeno Tipo I/sangre , Colágeno Tipo I/genética , Femenino , Filaminas/sangre , Filaminas/genética , Cardiopatías Congénitas/genética , Humanos , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , MicroARNs/sangre , MicroARNs/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
6.
Genetics ; 203(2): 733-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27098914

RESUMEN

SUN (Sad1 and UNC-84) and KASH (Klarsicht, ANC-1, and Syne homology) proteins are constituents of the inner and outer nuclear membranes. They interact in the perinuclear space via C-terminal SUN-KASH domains to form the linker of nucleoskeleton and cytoskeleton (LINC) complex thereby bridging the nuclear envelope. LINC complexes mediate numerous biological processes by connecting chromatin with the cytoplasmic force-generating machinery. Here we show that the coiled-coil domains of SUN-1 are required for oligomerization and retention of the protein in the nuclear envelope, especially at later stages of female gametogenesis. Consistently, deletion of the coiled-coil domain makes SUN-1 sensitive to unilateral force exposure across the nuclear membrane. Premature loss of SUN-1 from the nuclear envelope leads to embryonic death due to loss of centrosome-nuclear envelope attachment. However, in contrast to previous notions we can show that the coiled-coil domain is dispensable for functional LINC complex formation, exemplified by successful chromosome sorting and synapsis in meiotic prophase I in its absence.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Nuclear/metabolismo , Oogonios/metabolismo , Multimerización de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Meiosis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios Proteicos , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética
7.
Cell Rep ; 9(4): 1482-94, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25456137

RESUMEN

The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform.


Asunto(s)
Adenosina Desaminasa/metabolismo , Inmunidad Innata , Edición de ARN , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adenosina Desaminasa/genética , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Cruzamientos Genéticos , Citocinas/metabolismo , Pérdida del Embrión/patología , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Inosina/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Fenotipo , Proteínas de Unión al ARN/genética , Receptores de Interferón/metabolismo , Análisis de Supervivencia , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Uracilo/metabolismo
8.
Nucleic Acids Res ; 42(19): 12155-68, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25260591

RESUMEN

Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to inosines in double-stranded RNAs including miRNA precursors. A to I editing is widespread and required for normal life. By comparing deep sequencing data of brain miRNAs from wild-type and ADAR2 deficient mouse strains, we detect editing sites and altered miRNA processing at high sensitivity. We detect 48 novel editing events in miRNAs. Some editing events reach frequencies of up to 80%. About half of all editing events depend on ADAR2 while some miRNAs are preferentially edited by ADAR1. Sixty-four percent of all editing events are located within the seed region of mature miRNAs. For the highly edited miR-3099, we experimentally prove retargeting of the edited miRNA to novel 3' UTRs. We show further that an abundant editing event in miR-497 promotes processing by Drosha of the corresponding pri-miRNA. We also detect reproducible changes in the abundance of specific miRNAs in ADAR2-deficient mice that occur independent of adjacent A to I editing events. This indicates that ADAR2 binding but not editing of miRNA precursors may influence their processing. Correlating with changes in miRNA abundance we find misregulation of putative targets of these miRNAs in the presence or absence of ADAR2.


Asunto(s)
Adenosina Desaminasa/metabolismo , Encéfalo/enzimología , MicroARNs/metabolismo , Edición de ARN , Proteínas de Unión al ARN/metabolismo , Adenosina Desaminasa/genética , Animales , Secuencia de Bases , Línea Celular , Células HEK293 , Humanos , Ratones , Ratones Noqueados , MicroARNs/química , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética
9.
Mol Biol Cell ; 25(13): 2094-104, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24829383

RESUMEN

MicroRNAs (miRNAs) are ∼21-nucleotide-long, single-stranded noncoding RNAs that regulate gene expression. Biogenesis of miRNAs is mediated by the two RNase III-like enzymes, Drosha and Dicer. Here we study miRNA biogenesis during maturation of Xenopus oocytes to eggs using microinjection of pri-miRNAs. We show that processing of exogenous and endogenous primary miRNAs (pri-miRNAs) is strongly enhanced upon maturation of oocytes to eggs. Overexpression of cloned Xenopus Drosha in oocytes, however, boosts pri-miRNA processing dramatically, indicating that Drosha is a rate-limiting factor in Xenopus oocytes. This developmental regulation of Drosha is controlled by poly(A) length addition to the Drosha mRNA, which boosts translation upon transition from oocytes to eggs. Processing of pri-miRNAs by Drosha and Dicer has been shown to be affected by adenosine-to-inosine deamination-type RNA editing. Using activated Xenopus eggs for microinjection experiments, we demonstrate that RNA editing can reduce pri-miRNA processing in vivo. This processing block is determined by the structural but not sequence changes introduced by RNA editing.


Asunto(s)
Oocitos/enzimología , Ribonucleasa III/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Secuencia de Bases , Núcleo Celular/enzimología , Células Cultivadas , Regulación Enzimológica de la Expresión Génica , MicroARNs/metabolismo , Datos de Secuencia Molecular , Oocitos/fisiología , Biosíntesis de Proteínas , División del ARN , Edición de ARN , Ribonucleasa III/genética , Proteínas de Xenopus/genética , Xenopus laevis
10.
Genome Res ; 22(8): 1468-76, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22310477

RESUMEN

Adenosine deaminases that act on RNA bind double-stranded and structured RNAs and convert adenosines to inosines by hydrolytic deamination. Inosines are recognized as guanosines, and, hence, RNA editing alters the sequence information but also structure of RNAs. Editing by ADARs is widespread and essential for normal life and development. Precursors of miRNAs are abundantly edited by ADARs, but neither the abundance nor the consequences of miRNA editing has been firmly established. Using transgenic mouse embryos that are deficient in the two enzymatically active editing enzymes ADAR and ADARB1, we compare relative frequencies but also sequence composition of miRNAs in these genetically modified backgrounds to wild-type mice by "next-generation sequencing." Deficiency of ADARB1 leads to a reproducible change in abundance of specific miRNAs and their predicted targets. Changes in miRNA abundance seem unrelated to editing events. Additional deletion of ADAR has surprisingly little impact on the mature miRNA repertoire, indicating that miRNA expression is primarily dependent on ADARB1. A-to-G transitions reflecting A-to-I editing events can be detected at few sites and at low frequency during the early embryonic stage investigated. Again, most editing events are ADARB1-dependent with only few editing sites being specifically edited by ADAR. Besides known editing events in miRNAs, a few novel, previously unknown editing events were identified. Some editing events are located to the seed region of miRNAs, opening the possibility that editing leads to their retargeting.


Asunto(s)
Adenosina Desaminasa/metabolismo , Embrión de Mamíferos/enzimología , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Edición de ARN , Adenosina Desaminasa/genética , Animales , Secuencia de Bases , Sitios de Unión , Embrión de Mamíferos/citología , Desarrollo Embrionario , Femenino , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Noqueados , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA