Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 185(19): 3568-3587.e27, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113428

RESUMEN

Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular, anatomical, and computational features), we identified encoding of reward-predictive cues and reward outcomes in distinct genetically defined neural populations, including TH+ cells and Tac1+ cells. Data from genetically targeted recordings were used to train an optimized nonlinear dynamical systems model and revealed activity dynamics consistent with a line attractor. High-density, cell-type-specific electrophysiological recordings and optogenetic perturbation provided supporting evidence for this model. Reverse-engineering predicted how Tac1+ cells might integrate reward history, which was complemented by in vivo experimentation. This integrated approach describes a process by which data-driven computational models of population activity can generate and frame actionable hypotheses for cell-type-specific investigation in biological systems.


Asunto(s)
Habénula , Recompensa , Dinámica Poblacional
2.
Nat Commun ; 12(1): 3689, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140486

RESUMEN

Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging.


Asunto(s)
Interfaces Cerebro-Computador , Calcio/metabolismo , Dendritas/fisiología , Microscopía Intravital/instrumentación , Microscopía Intravital/métodos , Corteza Motora/diagnóstico por imagen , Imagen Multimodal/métodos , Animales , Proteínas de Unión al Calcio/metabolismo , Dendritas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Implantes Experimentales , Macaca mulatta , Masculino , Modelos Neurológicos , Actividad Motora/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Fotones
3.
Nature ; 586(7827): 87-94, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32939091

RESUMEN

Advanced imaging methods now allow cell-type-specific recording of neural activity across the mammalian brain, potentially enabling the exploration of how brain-wide dynamical patterns give rise to complex behavioural states1-12. Dissociation is an altered behavioural state in which the integrity of experience is disrupted, resulting in reproducible cognitive phenomena including the dissociation of stimulus detection from stimulus-related affective responses. Dissociation can occur as a result of trauma, epilepsy or dissociative drug use13,14, but despite its substantial basic and clinical importance, the underlying neurophysiology of this state is unknown. Here we establish such a dissociation-like state in mice, induced by precisely-dosed administration of ketamine or phencyclidine. Large-scale imaging of neural activity revealed that these dissociative agents elicited a 1-3-Hz rhythm in layer 5 neurons of the retrosplenial cortex. Electrophysiological recording with four simultaneously deployed high-density probes revealed rhythmic coupling of the retrosplenial cortex with anatomically connected components of thalamus circuitry, but uncoupling from most other brain regions was observed-including a notable inverse correlation with frontally projecting thalamic nuclei. In testing for causal significance, we found that rhythmic optogenetic activation of retrosplenial cortex layer 5 neurons recapitulated dissociation-like behavioural effects. Local retrosplenial hyperpolarization-activated cyclic-nucleotide-gated potassium channel 1 (HCN1) pacemakers were required for systemic ketamine to induce this rhythm and to elicit dissociation-like behavioural effects. In a patient with focal epilepsy, simultaneous intracranial stereoencephalography recordings from across the brain revealed a similarly localized rhythm in the homologous deep posteromedial cortex that was temporally correlated with pre-seizure self-reported dissociation, and local brief electrical stimulation of this region elicited dissociative experiences. These results identify the molecular, cellular and physiological properties of a conserved deep posteromedial cortical rhythm that underlies states of dissociation.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Trastornos Disociativos/fisiopatología , Potenciales de Acción/efectos de los fármacos , Animales , Conducta/efectos de los fármacos , Ondas Encefálicas/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/efectos de los fármacos , Trastornos Disociativos/diagnóstico por imagen , Electrofisiología , Femenino , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ketamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Optogenética , Autoinforme , Tálamo/citología , Tálamo/diagnóstico por imagen , Tálamo/efectos de los fármacos , Tálamo/fisiología
4.
Neuron ; 107(5): 836-853.e11, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32574559

RESUMEN

The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and reading out activity patterns for cells in living organisms has enabled causal investigation in physiology and behavior; however, cell-type-specific delivery of these tools (including microbial opsins for optogenetics and genetically encoded Ca2+ indicators) has thus far fallen short of versatile targeting to cells jointly defined by many individually selected features. Here, we develop a comprehensive intersectional targeting toolbox including 39 novel vectors for joint-feature-targeted delivery of 13 molecular payloads (including opsins, indicators, and fluorophores), systematic approaches for development and optimization of new intersectional tools, hardware for in vivo monitoring of expression dynamics, and the first versatile single-virus tools (Triplesect) that enable targeting of triply defined cell types.


Asunto(s)
Técnicas Genéticas , Neuronas , Optogenética , Animales , Dependovirus , Vectores Genéticos , Células HEK293 , Humanos
5.
Science ; 361(6400)2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29930089

RESUMEN

Retrieving high-content gene-expression information while retaining three-dimensional (3D) positional anatomy at cellular resolution has been difficult, limiting integrative understanding of structure and function in complex biological tissues. We developed and applied a technology for 3D intact-tissue RNA sequencing, termed STARmap (spatially-resolved transcript amplicon readout mapping), which integrates hydrogel-tissue chemistry, targeted signal amplification, and in situ sequencing. The capabilities of STARmap were tested by mapping 160 to 1020 genes simultaneously in sections of mouse brain at single-cell resolution with high efficiency, accuracy, and reproducibility. Moving to thick tissue blocks, we observed a molecularly defined gradient distribution of excitatory-neuron subtypes across cubic millimeter-scale volumes (>30,000 cells) and a short-range 3D self-clustering in many inhibitory-neuron subtypes that could be identified and described with 3D STARmap.


Asunto(s)
Imagenología Tridimensional , Neuronas/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcripción Genética , Transcriptoma , Animales , Mapeo Cromosómico , Lóbulo Frontal/citología , Lóbulo Frontal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Molecular , Corteza Somatosensorial/citología , Corteza Somatosensorial/metabolismo , Corteza Visual/citología , Corteza Visual/metabolismo
6.
Cell ; 171(6): 1411-1423.e17, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29103613

RESUMEN

Internal states of the brain profoundly influence behavior. Fluctuating states such as alertness can be governed by neuromodulation, but the underlying mechanisms and cell types involved are not fully understood. We developed a method to globally screen for cell types involved in behavior by integrating brain-wide activity imaging with high-content molecular phenotyping and volume registration at cellular resolution. We used this method (MultiMAP) to record from 22 neuromodulatory cell types in behaving zebrafish during a reaction-time task that reports alertness. We identified multiple monoaminergic, cholinergic, and peptidergic cell types linked to alertness and found that activity in these cell types was mutually correlated during heightened alertness. We next recorded from and controlled homologous neuromodulatory cells in mice; alertness-related cell-type dynamics exhibited striking evolutionary conservation and modulated behavior similarly. These experiments establish a method for unbiased discovery of cellular elements underlying behavior and reveal an evolutionarily conserved set of diverse neuromodulatory systems that collectively govern internal state.


Asunto(s)
Conducta Animal , Encéfalo/citología , Encéfalo/fisiología , Neuronas/citología , Animales , Mapeo Encefálico , Larva/citología , Larva/fisiología , Ratones , Vías Nerviosas , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología
7.
Nat Methods ; 14(10): 959-962, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846090

RESUMEN

We present Omni-ATAC, an improved ATAC-seq protocol for chromatin accessibility profiling that works across multiple applications with substantial improvement of signal-to-background ratio and information content. The Omni-ATAC protocol generates chromatin accessibility profiles from archival frozen tissue samples and 50-µm sections, revealing the activities of disease-associated DNA elements in distinct human brain structures. The Omni-ATAC protocol enables the interrogation of personal regulomes in tissue context and translational studies.


Asunto(s)
ADN/genética , Congelación , Genoma , Manejo de Especímenes/métodos , Animales , Encéfalo , Línea Celular , Eritrocitos , Regulación Enzimológica de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Queratinocitos , Ratones , Replicación de Secuencia Autosostenida , Neoplasias de la Tiroides , Transposasas/metabolismo
8.
Cell Rep ; 17(6): 1699-1710, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806306

RESUMEN

Spinal dorsal horn circuits receive, process, and transmit somatosensory information. To understand how specific components of these circuits contribute to behavior, it is critical to be able to directly modulate their activity in unanesthetized in vivo conditions. Here, we develop experimental tools that enable optogenetic control of spinal circuitry in freely moving mice using commonly available materials. We use these tools to examine mechanosensory processing in the spinal cord and observe that optogenetic activation of somatostatin-positive interneurons facilitates both mechanosensory and itch-related behavior, while reversible chemogenetic inhibition of these neurons suppresses mechanosensation. These results extend recent findings regarding the processing of mechanosensory information in the spinal cord and indicate the potential for activity-induced release of the somatostatin neuropeptide to affect processing of itch. The spinal implant approach we describe here is likely to enable a wide range of studies to elucidate spinal circuits underlying pain, touch, itch, and movement.


Asunto(s)
Mecanotransducción Celular , Médula Espinal/fisiología , Animales , Femenino , Histamina , Interneuronas/fisiología , Luz , Ratones Endogámicos C57BL , Fibras Ópticas , Optogenética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Prurito/patología , Prurito/fisiopatología , Somatostatina/metabolismo
9.
Sci Rep ; 6: 30570, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27484850

RESUMEN

Spatially targeted, genetically-specific strategies for sustained inhibition of nociceptors may help transform pain science and clinical management. Previous optogenetic strategies to inhibit pain have required constant illumination, and chemogenetic approaches in the periphery have not been shown to inhibit pain. Here, we show that the step-function inhibitory channelrhodopsin, SwiChR, can be used to persistently inhibit pain for long periods of time through infrequent transdermally delivered light pulses, reducing required light exposure by >98% and resolving a long-standing limitation in optogenetic inhibition. We demonstrate that the viral expression of the hM4D receptor in small-diameter primary afferent nociceptor enables chemogenetic inhibition of mechanical and thermal nociception thresholds. Finally, we develop optoPAIN, an optogenetic platform to non-invasively assess changes in pain sensitivity, and use this technique to examine pharmacological and chemogenetic inhibition of pain.


Asunto(s)
Channelrhodopsins/genética , Clozapina/análogos & derivados , Optogenética/métodos , Dolor/tratamiento farmacológico , Dolor/radioterapia , Animales , Células Cultivadas , Clozapina/administración & dosificación , Clozapina/uso terapéutico , Terapia Combinada , Modelos Animales de Enfermedad , Terapia por Luz de Baja Intensidad , Ratones , Nocicepción
10.
Tissue Eng Part C Methods ; 20(7): 570-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24251630

RESUMEN

Recent advances in three-dimensional (3D) tissue engineering have concomitantly generated a need for new methods to visualize and assess the tissue. In particular, methods for imaging intact volumes of whole tissue, rather than a single plane, are required. Herein, we describe the use of multiphoton microscopy, combined with optical clearing, to noninvasively probe decellularized lung extracellular matrix scaffolds and decellularized, tissue-engineered blood vessels. We also evaluate recellularized lung tissue scaffolds. In addition to nondestructive imaging of tissue volumes greater than 4 mm(3), the lung tissue can be visualized using three distinct signals, combined or singly, that allow for simple separation of cells and different components of the extracellular matrix. Because the 3D volumes are not reconstructions, they do not require registration algorithms to generate digital volumes, and maintenance of isotropic resolution is not required when acquiring stacks of images. Once a virtual volume of tissue is generated, structures that have innate 3D features, such as the lumens of vessels and airways, are easily animated and explored in all dimensions. In blood vessels, individual collagen fibers can be visualized at the micron scale and their alignment assessed at various depths through the tissue, potentially providing some nondestructive measure of vessel integrity and mechanics. Finally, both the lungs and vessels assayed here were optically cleared, imaged, and visualized in a matter of hours, such that the added benefits of these techniques can be achieved with little more hassle or processing time than that associated with traditional histological methods.


Asunto(s)
Matriz Extracelular/química , Pulmón/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Línea Celular Tumoral , Humanos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Ratas
11.
Arch Pathol Lab Med ; 138(3): 395-402, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23829375

RESUMEN

CONTEXT: Despite continuing advances in tissue processing automation, traditional embedding, cutting, and staining methods limit our ability for rapid, comprehensive visual examination. These limitations are particularly relevant to biopsies for which immediate therapeutic decisions are most necessary, faster feedback to the patient is desired, and preservation of tissue for ancillary studies is most important. The recent development of improved tissue clearing techniques has made it possible to consider use of multiphoton microscopy (MPM) tools in clinical settings, which could address difficulties of established methods. OBJECTIVE: To demonstrate the potential of MPM of cleared tissue for the evaluation of unembedded and uncut pathology samples. DESIGN: Human prostate, liver, breast, and kidney specimens were fixed and dehydrated by using traditional histologic techniques, with or without incorporation of nucleic acid fluorescent stains into dehydration steps. A benzyl alcohol/benzyl benzoate clearing protocol was substituted for xylene. Multiphoton microscopy was performed on a home-built system. RESULTS: Excellent morphologic detail was achievable with MPM at depths greater than 500 µm. Pseudocoloring produced images analogous to hematoxylin-eosin-stained images. Concurrent second-harmonic generation detection allowed mapping of collagen. Subsequent traditional section staining with hematoxylin-eosin did not reveal any detrimental morphologic effects. Sample immunostains on renal tissue showed preservation of normal reactivity. Complete reconstructions of 1-mm cubic samples elucidated 3-dimensional architectural organization. CONCLUSIONS: Multiphoton microscopy on cleared, unembedded, uncut biopsy specimens shows potential as a practical clinical tool with significant advantages over traditional histology while maintaining compatibility with gold standard techniques. Further investigation to address remaining implementation barriers is warranted.


Asunto(s)
Mama/patología , Riñón/patología , Hígado/patología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Próstata/patología , Femenino , Humanos , Imagenología Tridimensional , Masculino
12.
J Vis Exp ; (67): e3848, 2012 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-23023035

RESUMEN

Multiphoton microscopy of intrinsic fluorescence and second harmonic generation (SHG) of whole mouse organs is made possible by optically clearing the organ before imaging.(1,2) However, for organs that contain fluorescent proteins such as GFP and YFP, optical clearing protocols that use methanol dehydration and clear using benzyl alcohol:benzyl benzoate (BABB) while unprotected from light(3) do not preserve the fluorescent signal. The protocol presented here is a novel way in which to perform whole organ optical clearing on mouse brain while preserving the fluorescence signal of YFP expressed in neurons. Altering the optical clearing protocol such that the organ is dehydrated using an ethanol graded series has been found to reduce the damage to the fluorescent proteins and preserve their fluorescent signal for multiphoton imaging.(4) Using an optimized method of optical clearing with ethanol-based dehydration and clearing by BABB while shielded from light, we show high-resolution multiphoton images of yellow fluorescent protein (YFP) expression in the neurons of a mouse brain more than 2 mm beneath the tissue surface.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Encéfalo/ultraestructura , Proteínas Luminiscentes/biosíntesis , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Proteínas Bacterianas/química , Benzoatos/química , Alcohol Bencilo/química , Encéfalo/metabolismo , Etanol/química , Proteínas Luminiscentes/química , Ratones , Neocórtex/ultraestructura , Neuronas/ultraestructura , Perfusión , Células Piramidales/ultraestructura
13.
J Biomed Opt ; 16(10): 106009, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22029356

RESUMEN

Multiphoton microscopy of cleared tissue has previously been demonstrated to generate large three-dimensional (3D) volumetric image data on entire intact mouse organs using intrinsic tissue fluorescence. This technique holds great promise for performing 3D virtual biopsies, providing unique information on tissue morphology, and guidance for subsequent traditional slicing and staining. Here, we demonstrate the use of fluorescence lifetime imaging in cleared organs for achieving molecular contrast that can reveal morphologically distinct structures, even in the absence of knowledge of the underlying molecular source. In addition, we demonstrate the power of multimodal imaging, combining multiphoton fluorescence, second harmonic generation, and lifetime imaging to reveal exceptional morphological detail in an optically cleared mouse knee.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Estructuras Animales/anatomía & histología , Animales , Articulaciones/anatomía & histología , Masculino , Ratones , Ratones Endogámicos C57BL , Fenómenos Ópticos , Testículo/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...