Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Nucleic Acids Res ; 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38860424

Fluorescence facilitates the detection, visualization, and tracking of molecules with high sensitivity and specificity. A functional DNA molecule that generates a robust fluorescent signal would offer significant advantages for many applications compared to intrinsically fluorescent proteins, which are expensive and labor intensive to synthesize, and fluorescent RNA aptamers, which are unstable under most conditions. Here, we describe a novel deoxyriboyzme that rapidly and efficiently generates a stable fluorescent product using a readily available coumarin substrate. An engineered version can detect picomolar concentrations of ribonucleases in a simple homogenous assay, and was used to rapidly identify novel inhibitors of the SARS-CoV-2 ribonuclease Nsp15 in a high-throughput screen. Our work adds an important new component to the toolkit of functional DNA parts, and also demonstrates how catalytic DNA motifs can be used to solve real-world problems.

2.
Nucleic Acids Res ; 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38869058

Colorimetric assays in which the color of a solution changes in the presence of an input provide a simple and inexpensive way to monitor experimental readouts. In this study we used in vitro selection to identify a self-phosphorylating kinase deoxyribozyme that produces a colorimetric signal by converting the colorless substrate pNPP into the yellow product pNP. The minimized catalytic core, sequence requirements, secondary structure, and buffer requirements of this deoxyribozyme, which we named Apollon, were characterized using a variety of techniques including reselection experiments, high-throughput sequencing, comparative analysis, biochemical activity assays, and NMR. A bimolecular version of Apollon catalyzed multiple turnover phosphorylation and amplified the colorimetric signal. Engineered versions of Apollon could detect oligonucleotides with specific sequences as well as several different types of nucleases in homogenous assays that can be performed in a single tube without the need for washes or purifications. We anticipate that Apollon will be particularly useful to reduce costs in high-throughput screens and for applications in which specialized equipment is not available.

3.
Nucleic Acids Res ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38813825

Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard the integrity of the chromatin fiber. The chromodomain protein MSL3 binds H3K36me3 to target X-chromosomal genes in male Drosophila for dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Unexpectedly, depletion of K36me3 had variable, locus-specific effects on the interactions of those readers. This observation motivated a systematic and comprehensive study of K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2 and K36me3 each contribute to distinct chromatin states. A gene-centric view of the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD and Ash1 revealed local, context-specific methylation signatures. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at regions with enhancer signatures. The genome-wide mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.

4.
Cells ; 13(3)2024 Jan 25.
Article En | MEDLINE | ID: mdl-38334618

The transcriptional co-activator lens epithelium-derived growth factor/p75 (LEDGF/p75) plays an important role in the biology of the cell and in several human diseases, including MLL-rearranged acute leukemia, autoimmunity, and HIV-1 infection. In both health and disease, LEDGF/p75 functions as a chromatin tether that interacts with proteins such as MLL1 and HIV-1 integrase via its integrase-binding domain (IBD) and with chromatin through its N-terminal PWWP domain. Recently, dimerization of LEDGF/p75 was shown, mediated by a network of electrostatic contacts between amino acids from the IBD and the C-terminal α6-helix. Here, we investigated the functional impact of LEDGF/p75 variants on the dimerization using biochemical and cellular interaction assays. The data demonstrate that the C-terminal α6-helix folds back in cis on the IBD of monomeric LEDGF/p75. We discovered that the presence of DNA stimulates LEDGF/p75 dimerization. LEDGF/p75 dimerization enhances binding to MLL1 but not to HIV-1 integrase, a finding that was observed in vitro and validated in cell culture. Whereas HIV-1 replication was not dependent on LEDGF/p75 dimerization, colony formation of MLLr-dependent human leukemic THP-1 cells was. In conclusion, our data indicate that intricate changes in the quaternary structure of LEDGF/p75 modulate its tethering function.


Chromatin , Intercellular Signaling Peptides and Proteins , Humans , Dimerization , Intercellular Signaling Peptides and Proteins/metabolism , DNA/metabolism
5.
Nucleic Acids Res ; 51(18): 10011-10025, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37615563

Eukaryotic transcription is dependent on specific histone modifications. Their recognition by chromatin readers triggers complex processes relying on the coordinated association of transcription regulatory factors. Although various modification states of a particular histone residue often lead to differential outcomes, it is not entirely clear how they are discriminated. Moreover, the contribution of intrinsically disordered regions outside of the specialized reader domains to nucleosome binding remains unexplored. Here, we report the structures of a PWWP domain from transcriptional coactivator LEDGF in complex with the H3K36 di- and trimethylated nucleosome, indicating that both methylation marks are recognized by PWWP in a highly conserved manner. We identify a unique secondary interaction site for the PWWP domain at the interface between the acidic patch and nucleosomal DNA that might contribute to an H3K36-methylation independent role of LEDGF. We reveal DNA interacting motifs in the intrinsically disordered region of LEDGF that discriminate between the intra- or extranucleosomal DNA but remain dynamic in the context of dinucleosomes. The interplay between the LEDGF H3K36-methylation reader and protein binding module mediated by multivalent interactions of the intrinsically disordered linker with chromatin might help direct the elongation machinery to the vicinity of RNA polymerase II, thereby facilitating productive elongation.

6.
Biochem Soc Trans ; 51(1): 125-135, 2023 02 27.
Article En | MEDLINE | ID: mdl-36651856

Interaction scaffolds that selectively recognize disordered protein strongly shape protein interactomes. An important scaffold of this type that contributes to transcription is the TFIIS N-terminal domain (TND). The TND is a five-helical bundle that has no known enzymatic activity, but instead selectively reads intrinsically disordered sequences of other proteins. Here, we review the structural and functional properties of TNDs and their cognate disordered ligands known as TND-interacting motifs (TIMs). TNDs or TIMs are found in prominent members of the transcription machinery, including TFIIS, super elongation complex, SWI/SNF, Mediator, IWS1, SPT6, PP1-PNUTS phosphatase, elongin, H3K36me3 readers, the transcription factor MYC, and others. We also review how the TND interactome contributes to the regulation of transcription. Because the TND is the most significantly enriched fold among transcription elongation regulators, TND- and TIM-driven interactions have widespread roles in the regulation of many transcriptional processes.


Transcription Factors , Transcriptional Elongation Factors , Transcription Factors/metabolism , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , Elongin/metabolism , Gene Expression Regulation
7.
Nucleic Acids Res ; 50(18): 10436-10448, 2022 10 14.
Article En | MEDLINE | ID: mdl-36155818

Covalent DNA interstrand crosslinks are toxic DNA damage lesions that block the replication machinery that can cause a genomic instability. Ubiquitous abasic DNA sites are particularly susceptible to spontaneous cross-linking with a base from the opposite DNA strand. Detection of a crosslink induces the DNA helicase ubiquitination that recruits NEIL3, a DNA glycosylase responsible for the lesion removal. NEIL3 utilizes several zinc finger domains indispensable for its catalytic NEI domain repairing activity. They recruit NEIL3 to the repair site and bind the single-stranded DNA. However, the molecular mechanism underlying their roles in the repair process is unknown. Here, we report the structure of the tandem zinc-finger GRF domain of NEIL3 and reveal the molecular details of its interaction with DNA. Our biochemical data indicate the preferential binding of the GRF domain to the replication fork. In addition, we obtained a structure for the catalytic NEI domain in complex with the DNA reaction intermediate that allowed us to construct and validate a model for the interplay between the NEI and GRF domains in the recognition of an interstrand cross-link. Our results suggest a mechanism for recognition of the DNA replication X-structure by NEIL3, a key step in the interstrand cross-link repair.


DNA Repair , Endodeoxyribonucleases/metabolism , DNA/chemistry , DNA Damage , DNA Glycosylases/metabolism , DNA Helicases/metabolism , DNA, Single-Stranded , Zinc
8.
Methods Protoc ; 5(5)2022 Sep 03.
Article En | MEDLINE | ID: mdl-36136816

The liver is a complex organ that governs many types of metabolisms, including energy metabolism and other cellular processes. The liver also plays a crucial role in important functions in immunity, and the activity of liver tissue-associated immunity affects the outcome of many liver pathologies. A thorough characterization of the liver immune microenvironment may contribute to a better understanding of immune signaling, the mechanisms of specific immune responses, and even to improved predictions about therapy outcomes. In this paper, we present an optimized, simple, and rapid protocol to characterize the liver-associated immune cell milieu. We believe that the most suitable technique for obtaining a complex immune cell suspension and for removing contaminating blood cells is to perform mouse liver perfusion, using only phosphate buffer saline. Combining an enzymatic digestion and a mechanical dissociation of liver tissue, followed by cell purification, improves downstream applications. This combination is an essential prerequisite for immune cell determination and characterization. We then demonstrate a flow cytometry-based multiparametric immunophenotyping along with a gating strategy to detect and quantify liver endothelial cells, T cells (helper and cytotoxic), B cells, NK cells, NKT cells, neutrophils, monocytes (subsets included), dendritic cells (subsets included), macrophages and Kupffer cells.

9.
Protein Sci ; 31(5): e4287, 2022 05.
Article En | MEDLINE | ID: mdl-35481640

Transcription factor p53 protects cells against tumorigenesis when subjected to various cellular stresses. Under these conditions, p53 interacts with transcription factor Forkhead box O (FOXO) 4, thereby inducing cellular senescence by upregulating the transcription of senescence-associated protein p21. However, the structural details of this interaction remain unclear. Here, we characterize the interaction between p53 and FOXO4 by NMR, chemical cross-linking, and analytical ultracentrifugation. Our results reveal that the interaction between p53 TAD and the FOXO4 Forkhead domain is essential for the overall stability of the p53:FOXO4 complex. Furthermore, contacts involving the N-terminal segment of FOXO4, the C-terminal negative regulatory domain of p53 and the DNA-binding domains of both proteins stabilize the complex, whose formation blocks p53 binding to DNA but without affecting the DNA-binding properties of FOXO4. Therefore, our structural findings may help to understand the intertwined functions of p53 and FOXO4 in cellular homeostasis, longevity, and stress response.


Forkhead Transcription Factors , Tumor Suppressor Protein p53 , Cell Cycle Proteins/metabolism , DNA/chemistry , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Protein Binding , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Science ; 374(6571): 1113-1121, 2021 Nov 26.
Article En | MEDLINE | ID: mdl-34822292

During eukaryotic transcription elongation, RNA polymerase II (RNAP2) is regulated by a chorus of factors. Here, we identified a common binary interaction module consisting of TFIIS N-terminal domains (TNDs) and natively unstructured TND-interacting motifs (TIMs). This module was conserved among the elongation machinery and linked complexes including transcription factor TFIIS, Mediator, super elongation complex, elongin, IWS1, SPT6, PP1-PNUTS phosphatase, H3K36me3 readers, and other factors. Using nuclear magnetic resonance, live-cell microscopy, and mass spectrometry, we revealed the structural basis for these interactions and found that TND-TIM sequences were necessary and sufficient to induce strong and specific colocalization in the crowded nuclear environment. Disruption of a single TIM in IWS1 induced robust changes in gene expression and RNAP2 elongation dynamics, which underscores the functional importance of TND-TIM surfaces for transcription elongation.


Intrinsically Disordered Proteins/chemistry , RNA Polymerase II/metabolism , RNA-Binding Proteins/chemistry , Transcription Elongation, Genetic , Transcription Factors/chemistry , Transcriptional Elongation Factors/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Gene Expression , Humans , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs/genetics , Protein Interaction Maps , RNA Polymerase II/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Elongation Factors/metabolism
11.
Sci Rep ; 11(1): 5239, 2021 03 04.
Article En | MEDLINE | ID: mdl-33664400

While DNA encodes protein structure, glycans provide a complementary layer of information to protein function. As a prime example of the significance of glycans, the ability of the cell surface receptor CD44 to bind its ligand, hyaluronan, is modulated by N-glycosylation. However, the details of this modulation remain unclear. Based on atomistic simulations and NMR, we provide evidence that CD44 has multiple distinct binding sites for hyaluronan, and that N-glycosylation modulates their respective roles. We find that non-glycosylated CD44 favors the canonical sub-micromolar binding site, while glycosylated CD44 binds hyaluronan with an entirely different micromolar binding site. Our findings show (for the first time) how glycosylation can alter receptor affinity by shielding specific regions of the host protein, thereby promoting weaker binding modes. The mechanism revealed in this work emphasizes the importance of glycosylation in protein function and poses a challenge for protein structure determination where glycosylation is usually neglected.


Hyaluronan Receptors/genetics , Hyaluronic Acid/genetics , Polysaccharides/genetics , Protein Conformation , Binding Sites/genetics , Cell Adhesion/genetics , Glycosylation , Humans , Hyaluronan Receptors/ultrastructure , Magnetic Resonance Spectroscopy , Protein Binding/genetics , Receptors, Cell Surface/genetics
12.
Cytokine ; 142: 155476, 2021 06.
Article En | MEDLINE | ID: mdl-33706174

The proinflammatory cytokines IL-17A and IL-17F have been identified as key drivers of a range of human inflammatory diseases, such as psoriasis, which has led to several therapeutic antibodies targeted at IL-17A. The two cytokines have been shown to tightly associate as functional homo and hetero dimers, which induce signalling via the formation of a cell surface signalling complex with a single copy of both IL-17RA and IL-17RC. Striking differences in affinity have been observed for IL-17RA binding to IL-17AA, IL-17AF and IL-17FF, however, the functional significance and molecular basis for this has remained unclear. We have obtained comprehensive backbone NMR assignments for full length IL-17AA (79%), IL-17AF (93%) and IL-17FF (89%), which show that the dimers adopt almost identical backbone topologies in solution to those observed in reported crystal structures. Analysis of the line widths and intensities of assigned backbone amide NMR signals has revealed striking differences in the conformational plasticity and dynamics of IL-17AA compared to both IL-17AF and IL-17FF. Our NMR data indicate that a number of regions of IL-17AA are interconverting between at least two distinct conformations on a relatively slow timescale. Such conformational heterogeneity has previously been shown to play an important role in the formation of many high affinity protein-protein complexes. The locations of the affected IL-17AA residues essentially coincides with the regions of both IL-17A and IL-17F previously shown to undergo significant structural changes on binding to IL-17RA. Substantially less conformational exchange was revealed by the NMR data for IL-17FF and IL-17AF. We propose that the markedly different conformational dynamic properties of the distinct functional IL-17 dimers plays a key role in determining their affinities for IL-17RA, with the more dynamic and plastic nature of IL-17AA contributing to the significantly tighter affinity observed for binding to IL-17RA. In contrast, the dynamic properties are expected to have little influence on the affinity of IL-17 dimers for IL-17RC, which has recently been shown to induce only small structural changes in IL-17FF upon binding.


Interleukin-17/chemistry , Interleukin-17/metabolism , Receptors, Interleukin-17/metabolism , Amino Acid Sequence , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Conformation , Protein Multimerization
13.
Nucleic Acids Res ; 49(4): 1816-1827, 2021 02 26.
Article En | MEDLINE | ID: mdl-33544841

G-quadruplexes are noncanonical nucleic acid structures formed by stacked guanine tetrads. They are capable of a range of functions and thought to play widespread biological roles. This diversity raises an important question: what determines the biochemical specificity of G-quadruplex structures? The answer is particularly important from the perspective of biological regulation because genomes can contain hundreds of thousands of G-quadruplexes with a range of functions. Here we analyze the specificity of each sequence in a 496-member library of variants of a reference G-quadruplex with respect to five functions. Our analysis shows that the sequence requirements of G-quadruplexes with these functions are different from one another, with some mutations altering biochemical specificity by orders of magnitude. Mutations in tetrads have larger effects than mutations in loops, and changes in specificity are correlated with changes in multimeric state. To complement our biochemical data we determined the solution structure of a monomeric G-quadruplex from the library. The stacked and accessible tetrads rationalize why monomers tend to promote a model peroxidase reaction and generate fluorescence. Our experiments support a model in which the sequence requirements of G-quadruplexes with different functions are overlapping but distinct. This has implications for biological regulation, bioinformatics, and drug design.


G-Quadruplexes , Base Sequence , DNA/chemistry , Fluorescence , Guanosine Triphosphate/chemistry , Models, Molecular , Mutation , Peroxidases/chemistry
14.
Cells ; 10(1)2021 01 19.
Article En | MEDLINE | ID: mdl-33477970

HDGF-related protein 2 (HRP-2) is a member of the Hepatoma-Derived Growth Factor-related protein family that harbors the structured PWWP and Integrase Binding Domain, known to associate with methylated histone tails or cellular and viral proteins, respectively. Interestingly, HRP-2 is a paralog of Lens Epithelium Derived Growth Factor p75 (LEDGF/p75), which is essential for MLL-rearranged (MLL-r) leukemia but dispensable for hematopoiesis. Sequel to these findings, we investigated the role of HRP-2 in hematopoiesis and MLL-r leukemia. Protein interactions were investigated by co-immunoprecipitation and validated using recombinant proteins in NMR. A systemic knockout mouse model was used to study normal hematopoiesis and MLL-ENL transformation upon the different HRP-2 genotypes. The role of HRP-2 in MLL-r and other leukemic, human cell lines was evaluated by lentiviral-mediated miRNA targeting HRP-2. We demonstrate that MLL and HRP-2 interact through a conserved interface, although this interaction proved less dependent on menin than the MLL-LEDGF/p75 interaction. The systemic HRP-2 knockout mice only revealed an increase in neutrophils in the peripheral blood, whereas the depletion of HRP-2 in leukemic cell lines and transformed primary murine cells resulted in reduced colony formation independently of MLL-rearrangements. In contrast, primary murine HRP-2 knockout cells were efficiently transformed by the MLL-ENL fusion, indicating that HRP-2, unlike LEDGF/p75, is dispensable for the transformation of MLL-ENL leukemogenesis but important for leukemic cell survival.


Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/metabolism , Cell Cycle Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Leukemia/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Cycle Proteins/genetics , Cell Survival , HEK293 Cells , Histone-Lysine N-Methyltransferase/genetics , Humans , Leukemia/genetics , Leukemia/pathology , Mice , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Transcription Factors/genetics
15.
PLoS Pathog ; 16(12): e1009100, 2020 12.
Article En | MEDLINE | ID: mdl-33264373

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.


COVID-19 , Molecular Docking Simulation , Nucleocapsid Proteins/chemistry , Phosphoproteins/chemistry , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Humans , Magnetic Resonance Spectroscopy , Nucleocapsid Proteins/genetics , Phosphoproteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
16.
ChemistryOpen ; 9(12): 1236-1250, 2020 12.
Article En | MEDLINE | ID: mdl-33304739

The formation of a G-quadruplex motif in the promoter region of the c-MYC protooncogene prevents its expression. Accordingly, G-quadruplex stabilization by a suitable ligand may be a viable approach for anticancer therapy. In our study, we used the 4-(4-methylpiperazin-1-yl)aniline molecule, previously identified as a fragment library screen hit, as a template for the SAR-guided design of a new small library of clickable fragments and subjected them to click reactions, including kinetic target-guided synthesis in the presence of a G-quadruplex forming oligonucleotide Pu24. We tested the clickable fragments and products of click reactions for their G-quadruplex stabilizing activity and determined their mode of binding to the c-MYC G-quadruplex by NMR spectroscopy. The enhanced stabilizing potency of click products in biology assays (FRET, Polymerase extension assay) matched the increased yields of in situ click reactions. In conclusion, we identified the newly synthesized click products of bis-amino derivatives of 4-(4-methylpiperazin-1-yl)aniline as potent stabilizers of c-MYC G-quadruplex, and their further evolution may lead to the development of an efficient tool for cancer treatment.


Aniline Compounds/chemistry , Aniline Compounds/pharmacology , G-Quadruplexes/drug effects , Aniline Compounds/chemical synthesis , Chemistry Techniques, Synthetic , Click Chemistry , Genes, myc/genetics , Kinetics , Ligands , Molecular Dynamics Simulation
17.
Structure ; 28(12): 1288-1299.e7, 2020 12 01.
Article En | MEDLINE | ID: mdl-32946742

Dimerization of many eukaryotic transcription regulatory factors is critical for their function. Regulatory role of an epigenetic reader lens epithelium-derived growth factor/p75 (LEDGF/p75) requires at least two copies of this protein to overcome the nucleosome-induced barrier to transcription elongation. Moreover, various LEDGF/p75 binding partners are enriched for dimeric features, further underscoring the functional regulatory role of LEDGF/p75 dimerization. Here, we dissected the minimal dimerization region in the C-terminal part of LEDGF/p75 and, using paramagnetic NMR spectroscopy, identified the key molecular contacts that helped to refine the solution structure of the dimer. The LEDGF/p75 dimeric assembly is stabilized by domain swapping within the integrase binding domain and additional electrostatic "stapling" of the negatively charged α helix formed in the intrinsically disordered C-terminal region. We validated the dimerization mechanism using structure-inspired dimerization defective LEDGF/p75 variants and chemical crosslinking coupled to mass spectrometry. We also show how dimerization might affect the LEDGF/p75 interactome.


Intercellular Signaling Peptides and Proteins/chemistry , Protein Multimerization , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Protein Domains , Static Electricity
18.
Biochim Biophys Acta Biomembr ; 1862(9): 183310, 2020 09 01.
Article En | MEDLINE | ID: mdl-32333856

Two distinct conformers of the adenylate cyclase toxin (CyaA) appear to accomplish its two parallel activities within target cell membrane. The translocating conformer would deliver the N-terminal adenylyl cyclase (AC) enzyme domain across plasma membrane into cytosol of cells, while the pore precursor conformer would assemble into oligomeric cation-selective pores and permeabilize cellular membrane. Both toxin activities then involve a membrane-interacting 'AC-to-Hly-linking segment' (residues 400 to 500). Here, we report the NMR structure of the corresponding CyaA411-490 polypeptide in dodecylphosphocholine micelles and show that it consists of two α-helices linked by an unrestrained loop. The N-terminal α-helix (Gly418 to His439) remained solvent accessible, while the C-terminal α-helix (His457 to Phe485) was fully enclosed within detergent micelles. CyaA411-490 weakly bound Ca2+ ions (apparent KD 2.6 mM) and permeabilized negatively charged lipid vesicles. At high concentrations (10 µM) the CyaA411-490 polypeptide formed stable conductance units in artificial lipid bilayers with applied voltage, suggesting its possible transmembrane orientation in the membrane-inserted toxin. Mutagenesis revealed that two clusters of negatively charged residues within the 'AC-to-Hly-linking segment' (Glu419 to Glu432 and Asp445 to Glu448) regulate the balance between the AC domain translocating and pore-forming capacities of CyaA in function of calcium concentration.


Adenylate Cyclase Toxin/chemistry , Biological Transport/genetics , Bordetella pertussis/chemistry , Lipid Bilayers/chemistry , Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/metabolism , Calcium/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane Permeability/genetics , Cyclic AMP/metabolism , Hemolysis/genetics , Humans , Lipid Bilayers/metabolism , Protein Conformation, alpha-Helical/genetics
19.
EMBO J ; 39(10): e102935, 2020 05 18.
Article En | MEDLINE | ID: mdl-31930742

Magnesium homeostasis is essential for life and depends on magnesium transporters, whose activity and ion selectivity need to be tightly controlled. Rhomboid intramembrane proteases pervade the prokaryotic kingdom, but their functions are largely elusive. Using proteomics, we find that Bacillus subtilis rhomboid protease YqgP interacts with the membrane-bound ATP-dependent processive metalloprotease FtsH and cleaves MgtE, the major high-affinity magnesium transporter in B. subtilis. MgtE cleavage by YqgP is potentiated in conditions of low magnesium and high manganese or zinc, thereby protecting B. subtilis from Mn2+ /Zn2+ toxicity. The N-terminal cytosolic domain of YqgP binds Mn2+ and Zn2+ ions and facilitates MgtE cleavage. Independently of its intrinsic protease activity, YqgP acts as a substrate adaptor for FtsH, a function that is necessary for degradation of MgtE. YqgP thus unites protease and pseudoprotease function, hinting at the evolutionary origin of rhomboid pseudoproteases such as Derlins that are intimately involved in eukaryotic ER-associated degradation (ERAD). Conceptually, the YqgP-FtsH system we describe here is analogous to a primordial form of "ERAD" in bacteria and exemplifies an ancestral function of rhomboid-superfamily proteins.


ATPases Associated with Diverse Cellular Activities/metabolism , Bacillus subtilis/metabolism , Endopeptidases/metabolism , Membrane Proteins/metabolism , Bacillus subtilis/growth & development , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Proteomics/methods
20.
FEBS J ; 287(8): 1626-1644, 2020 04.
Article En | MEDLINE | ID: mdl-31623019

Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase 5, which mediates various stress signals including oxidative stress. The catalytic activity of ASK1 is tightly controlled by oligomerization and binding of several cofactors. Among these cofactors, thioredoxin stands out as the most important ASK1 inhibitor, but only the reduced form of thioredoxin inhibits ASK1 by direct binding to its N-terminal domain. In addition, oxidation-driven thioredoxin dissociation is the key event in oxidative stress-mediated ASK1 activation. However, the structural mechanism of ASK1 regulation by thioredoxin remains unknown. Here, we report the characterization of the ASK1 domain responsible for thioredoxin binding and its complex using NMR spectroscopy and chemical cross-linking, thus providing the molecular basis for ASK1: thioredoxin complex dissociation under oxidative stress conditions. Our data reveal that the N-terminal domain of ASK1 adopts a fold resembling the thioredoxin structure while retaining substantial conformational plasticity at the thioredoxin-binding interface. Although oxidative stress induces relatively moderate structural changes in thioredoxin, the formation of intramolecular disulfide bridges leads to a considerable conformational rearrangement of the thioredoxin-binding interface on ASK1. Moreover, the cysteine residue at position 250 of ASK1 is the key element of this molecular switch. Finally, our results show that the redox-active site of thioredoxin is directly involved in ASK1 binding that is modulated by oxidative stress, thereby identifying a key target for the structure-based drug design.


Apoptosis , MAP Kinase Kinase Kinase 5/metabolism , Oxidative Stress , Thioredoxins/chemistry , Thioredoxins/metabolism , Binding Sites , Humans , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , Magnetic Resonance Spectroscopy , Models, Molecular , Oxidation-Reduction , Protein Kinase Inhibitors/pharmacology
...