Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Food Sci ; 89(6): 3290-3305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767864

RESUMEN

A better understanding of how emulsifier type could differently influence the behavior of nanostructured lipid carriers (NLC) under the gastrointestinal digestion process, as well as at the cellular level, is of utmost importance for the NLC-based formulations' optimization and risk assessment in the food field. In this study, NLC composed by fully hydrogenated soybean and high-oleic sunflower oils were prepared using soy lecithin (NLC Lß) or Tween 80 (NLC Tß) as an emulsifier. ß-Carotene was entrapped within NLC developed as a promising strategy to overcome ß-carotene's low bioavailability and stability. The effect of emulsifier type on the digestibility of ß-carotene-loaded NLC was evaluated using an in vitro dynamic digestion model mimicking peristalsis motion. The influence of ß-carotene-loaded NLC on cell viability was assessed using Caco-2 cells in vitro. NLC Tß remained stable in the gastric compartment, presenting particle size (PS) similar to the initial NLC (PS: 245.68 and 218.18 nm, respectively), while NLC Lß showed lower stability (PS > 1000 nm) in stomach and duodenum phases. NLC Tß also provided high ß-carotene protection and delivery capacity (i.e., ß-carotene bioaccessibility increased 10-fold). Based on the results of digestion studies, NLC Tß has shown better physical stability during the passage through the in vitro dynamic gastrointestinal system than NLC Lß. Moreover, the developed NLC did not compromise cell viability up to 25 µg/mL of ß-carotene. Thus, the NLC developed proved to be a biocompatible structure and able to incorporate and protect ß-carotene for further food applications. PRACTICAL APPLICATION: The findings of this study hold significant implications for industrial applications in terms of developing nanostructured lipid carriers from natural raw materials widely available and used to produce other lipid-based products in the food industry, as an alternative to synthetic ones. In this respect, the ß-carotene-loaded NLC developed in this study would find a great industrial application in the food industry, which is in constant search to develop functional foods capable of increasing the bioavailability of bioactive compounds.


Asunto(s)
Digestión , Emulsionantes , Nanoestructuras , beta Caroteno , beta Caroteno/química , beta Caroteno/farmacocinética , Células CACO-2 , Humanos , Emulsionantes/química , Nanoestructuras/química , Disponibilidad Biológica , Portadores de Fármacos/química , Tamaño de la Partícula , Lípidos/química , Polisorbatos/química , Lecitinas/química , Supervivencia Celular/efectos de los fármacos , Aceite de Girasol/química
2.
Polymers (Basel) ; 14(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36365752

RESUMEN

Encapsulation can be used as a strategy to protect and control the release of bioactive extracts. In this work, an extract from Spirulina sp. LEB-18, rich in phenolic compounds, was encapsulated in biopolymeric particles (i.e., composed of alginate) and characterized concerning their thermal behavior using differential scanning calorimetry (DSC), size, morphology, swelling index (S), and encapsulation efficiency (EE%); the release profile of the phenolic compounds at different pHs and the particle behavior under in vitro gastrointestinal digestion were also evaluated. It was shown that it is possible to encapsulate the phenolic extract from Spirulina sp. LEB-18 in alginate particles with high encapsulation efficiency (88.97%). It was also observed that the particles are amorphous and that the encapsulated phenolic compounds were released at a pH 7.2 but not at pH 1.5, which means that the alginate particles are able to protect the phenolic compounds from the harsh stomach conditions but lose their integrity under intestinal pH conditions. Regarding bioaccessibility, it was observed that the encapsulated phenolic compounds showed higher bioaccessibility compared to phenolic compounds in free form. This work increases the knowledge about the behavior of alginate particles encapsulating phenolic compounds during in vitro gastrointestinal digestion. It also provides essential information for designing biopolymeric particle formulations encapsulating phenolic compounds for application in pharmaceutical and food products.

3.
Int J Pharm ; 604: 120534, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33781887

RESUMEN

Curcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.


Asunto(s)
Curcumina , Nanoestructuras , Neoplasias , Disponibilidad Biológica , Humanos , Micelas , Neoplasias/tratamiento farmacológico
4.
Biomater Sci ; 9(6): 2183-2196, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33502392

RESUMEN

We generated stable amphiphilic copolymer-based polymeric micelles (PMs) with temperature-responsive properties utilizing Pluronic® L35 and a variety of ionic liquids (ILs) to generate different aqueous two-phase micellar systems (ATPMSs). The partitioning of the hydrophobic model compound curcumin (CCM) into the PM-rich phase and the drug delivery capabilities of the PMs were investigated. ATPMSs formed using more hydrophobic ILs (i.e., [Ch][Hex] ≈ [Ch][But] > [Ch][Pro] > [Ch][Ac] ≈ [Ch]Cl) were the most effective in partitioning (KCCM) and recovering (RECRich) CCM into the PM-rich phase (15.2 < KCCM < 22.0 and 90% < RECRich < 95%, respectively). Moreover, using 1.2 M [Ch][But] and 0.2 M [Ch][Hex] ILs yielded higher encapsulation efficiency (EE) (94.1 and 96.0%, respectively) and drug loading (DL) capacity (14.8 and 16.2%, respectively), together with an increase in the average hydrodynamic diameter of the PMs (DH) (42.5 and 45.6 nm, respectively). The CCM-PM formulations were stable at 4.0, 25.0, and 37.0 °C and the release of CCM was faster with the less hydrophobic ILs (i.e., [Ch]Cl and [Ch][Ac]). Furthermore, due to the lower critical solution temperature properties of Pluronic® L35, the PMs exhibit temperature responsiveness at 37.0 °C. In vitro cytotoxicity assays were also performed to determine the potency of CCM-PM formulations, and a 1.8-fold decrease in IC50 values was observed between the CCM-PMs/[Ch][Hex] and CCM-PMs/[Ch]Cl formulations for PC3 cells. The lower IC50 value for the [Ch][Hex] version corresponded to a greater potency compared to the [Ch]Cl version, since a lower concentration of CCM was required to achieve the same therapeutic effect. The ATPMSs investigated in this study serve as a novel platform for Pluronic® L35/PBS buffer (pH 7.4) + IL-based ATPMS development. The unique properties reported here may be useful in applications such as controlled-release drug delivery systems (DDS), encapsulation, and bioseparations.


Asunto(s)
Líquidos Iónicos , Micelas , Portadores de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros
5.
Polymers (Basel) ; 12(10)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977618

RESUMEN

Superabsorbent hydrogels (SAHs) are three dimensional networks formed by polymers that can absorb aqueous solution of over 100% of their initial weight. This work aimed to develop and characterize SAHs of Chitosan/Xanthan gum (CG), Chitosan/Alginate (CA) and controlled Chitosan (C), Xanthan gum (G), and Alginate (A) produced using "onion-like" methodology. The swelling performance, the morphological structure, the crystallinity, and the Fourier transformed infrared spectroscopy characteristics of SAH were used for the characterization of polyelectrolytes complex. Swelling analysis showed that chitosan has a strong influence on the maintenance of hydrogels structure after swelling, mainly in the acid environment (pH = 2). The chitosan hydrogel presented around 3000% of acidic fluid absorption after 24 h. The chitosan:xanthan gum (1:1 and 2:1 named as C1G1 and C2G1, respectively) hydrogels were the best combination regarding swelling performance in an acid environment, reaching 1665% and 2024%, respectively, as well at pH 7.0, presenting 1005% (C1G1) and 667% (C2G1). Scanning electron microscopy analysis showed samples with pores, and with different shapes. The X-ray diffraction showed the presence of a characteristic peak at 2θ = 20° in all developed composition because of the crystalline nature of chitosan. This work shows the possibility of developing eco-friendly biopolymer-based SAHs at a low cost with a good swelling capacity and stability.

6.
Food Res Int ; 116: 628-636, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716989

RESUMEN

Sodium caseinate (NaCAS) is widely used in the food industry to provide nutritional and functional benefits. This work deals with the effects of applying moderate electric fields (MEF) of different intensity - ranging from 2 V·cm-1 to 17 V·cm-1 - on the physical and functional properties of NaCAS solutions during Ohmic heating (OH) at 95 °C. Self-standing gels were produced regardless the heating technique applied (i.e. conventional or OH), and these gels were much more prone to physical rupture when compared with the ones produced from unheated NaCAS. Interestingly, OH treatment formed gels with lower values of strain at rupture and water holding capacity than unheated samples; this pattern was not observed for gels obtained through the conventional heating treatment (at 0 V·cm-1). These effects may be linked with disturbances of the distribution of random coil structures and enhanced solubility of NaCAS at its isoelectric point, reducing aggregation and impairing the development of a more compact protein network. Results show that OH presents potential to be used as volumetric heating tool for NaCAS solubilization and for the production of distinctive acidified systems.


Asunto(s)
Caseínas/química , Calefacción/métodos , Calor , Electricidad , Geles , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Agregado de Proteínas , Estructura Secundaria de Proteína , Solubilidad , Relación Estructura-Actividad , Agua/química
7.
Food Res Int ; 111: 168-177, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30007673

RESUMEN

In this study the effect of lecithin (L) addition and solvent quality in a well-established oleogel system formed by ß-sitosterol and γ-oryzanol (BG) was investigated. Medium chain triglycerides (MCT) and sunflower oil (SFO) were used as triglycerides and hexadecane (HEX) as a model of linear hydrocarbon. Lecithin was proposed due to its natural and versatile properties, showing different functionalities such as emulsifier and co-oleogelator. A study based on hierarchical organization of structured oil was performed applying techniques for bulk, meso and nanoscale. Self-sustained structures could no longer be observed after 40 wt% of BG replacement by lecithin. Small-angle X-ray scattering showed that the formed nanostructures (building blocks) were dependent on type of solvent and BG:L ratio in the mixture of oleogelators. Differential scanning calorimetry showed that stability against temperature was improved decreasing the polarity of the oil, and a time-dependent self-assembly of hybrid systems was observed from thermal and rheological measurements. Microscopy images exhibited changes on typical fibril aggregation of BG as lecithin was added, which promoted to a certain extent the suppression of ribbons. Oscillatory shear and uniaxial compression measurements were influenced by BG:L ratio and solvent mainly at higher lecithin amount. The combination of BG and MCT appeared to be the most affected by lecithin incorporation whereas SFO rendered harder oleogels. These results could contribute to understand the role of both lecithin and solvent type influencing the host oleogelator structure. It was hypothesized that intermolecular BG complex formation is hindered by lecithin, besides this phospholipid also might coexist as a different phase, causing structural changes in the gel network. Addressing the role of co-oleogelator it can provide the opportunity to tune soft materials with adjusted properties.


Asunto(s)
Lecitinas/análisis , Lecitinas/química , Fitosteroles/análisis , Fitosteroles/química , Rastreo Diferencial de Calorimetría , Cristalización , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Fenilpropionatos/química , Sitoesteroles/química , Aceite de Girasol/síntesis química , Triglicéridos/química
8.
Food Funct ; 9(4): 2456-2468, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29632933

RESUMEN

Here we have proposed to evaluate potential replacers of fat in sponge cake formulations. Our investigation consisted initially of monitoring the physical-chemical changes in sponge cake batters caused by gradually replacing the vegetable fat/margarine of a control sample (standard sponge cake recipe) with galactomannan extracted from the seeds of Cassia grandis. Several samples were prepared where a 100% concentration of vegetable fat was substituted with galactomannan in different concentrations. We then compared both microscopic and macroscopic characteristics of pure fat cake batter formulations and formulations with controlled fat/galactomannan mixtures. At this first stage, rheometry and optical microscopy were employed to characterize the rheological features and air bubble distribution in the batters. In the second stage, the effects of fat substitution with galactomannan, now for the final baked cakes, were also monitored. Scanning electron microscopy (SEM) and standard sensorial tests were performed in order to correlate the final color, texture, and taste characteristics of the final sponge cake and those characteristics obtained initially for the batter. According to the statistical analysis of the data, a 75% fat replacement with galactomannan at only 1.0% concentration was achieved, while successfully maintaining surface microstructure, sensory acceptance, and rheological behavior similar to the original formulation containing only fat. Regarding vegetable fat substitution with galactomannan, our results allow us to conclude that rheometry and bubble distribution tests on the initial batters are useful indicators of the final cake quality.


Asunto(s)
Pan/análisis , Cassia/química , Sustitutos de Grasa/química , Mananos/química , Extractos Vegetales/química , Adolescente , Adulto , Culinaria , Femenino , Harina/análisis , Galactosa/análogos & derivados , Calor , Humanos , Masculino , Persona de Mediana Edad , Reología , Gusto , Viscosidad , Adulto Joven
9.
Food Funct ; 9(3): 1755-1767, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29508864

RESUMEN

In this study, the effect of lecithin (LEC) on the crystallization and gelation of fruit wax (FW) with sunflower oil was researched. A synergistic effect on the gel strength was observed at FW : LEC ratios of 75 : 25 and 50 : 50, compared to the corresponding single component formulations (100 : 0 and 0 : 100). Even below the critical gelling concentration (Cg) of FW, the addition of lecithin enabled gel formation. Lecithin affected the thermal behavior of the structure by delaying both crystallization and gel formation. The phospholipid acted as a crystal habit modifier changing the microstructure of the oleogel, as was observed by polarized light microscopy. Cryo-scanning electron microscopy revealed a similar platelet-like arrangement for both FW as a single oleogelator and FW in combination with LEC. However, a denser structure could be observed in the FW : LEC oleogelator mixture. Both the oil-binding capacity and the thixotropic recovery were enhanced upon lecithin addition. These improvements were attributed to the hydrogen bonding between FW and LEC, as suggested by Raman spectroscopy. We hypothesized that lecithin alters the molecular assembly properties of the FW due to the interactions between the polar moieties of the oleogelators, which consequently impacts the hydrophobic tail (re)arrangement in gelator-gelator and solvent-gelator interactions. The lipid crystal engineering approach followed here offered prospects of obtaining harder self-standing structures at a lower oleogelator concentration. These synergistic interactions provide an opportunity to reduce the wax concentration and, as such, the waxy mouthfeel without compromising the oleogel properties.


Asunto(s)
Lecitinas/química , Ceras/química , Cristalización , Frutas/química , Enlace de Hidrógeno , Compuestos Orgánicos/química , Aceite de Girasol/química
10.
Plant Foods Hum Nutr ; 73(1): 68-73, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29335878

RESUMEN

This study aimed to recover bioactive compounds by solid-liquid extraction from the agro-industrial residue obtained during juçara fruits processing into pulp. A preliminary study using different solvents (methanol, ethanol and water) indicated ethanol in aqueous solution as the best solvent for antioxidants recovery. Then, a Box-Behnken design was applied considering as independent variables the solvent composition (30-70% ethanol in water), temperature (30-70 °C) and time (30-60 min), in order to evaluate the effects of these factors on antioxidant activity in juçara extract. Results showed that the extracts with higher antioxidant activity were obtained using 30% ethanol at 70 °C for 60 min; measurements included ABTS and DPPH assays, determination of total phenolic content and total monomeric anthocyanins. Furthermore, the effect of pH in antioxidants recovery was evaluated. For this purpose, the 30% ethanol solution was acidified to pH 1 and 2 with HCl. Principal component analysis showed the formation of three distinct groups: one characterized by high bioactive compounds content (pH 1.0), another with superior antioxidant activity (pH 5.75, non-acidified), and finally the group at pH 2 presenting the worst concentrations in the evaluated responses. HPLC analysis showed the presence of cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside in the extracts. Therefore, the conventional solid-liquid extraction using renewable solvent can be successfully applied to recover bioactive compounds from juçara residue, which can be used by different food industries.


Asunto(s)
Antioxidantes/aislamiento & purificación , Fraccionamiento Químico/métodos , Euterpe/química , Antocianinas/análisis , Antocianinas/aislamiento & purificación , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Etanol/química , Concentración de Iones de Hidrógeno , Metanol/química , Extractos Vegetales/química , Solventes/química
11.
Int J Biol Macromol ; 73: 31-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450047

RESUMEN

Hymenaea courbaril var courbaril seed xyloglucan was efficiently extracted with 0.1M NaCl, followed by ethanol precipitation (yield=72±5% w/w). Its amorphous structure was identified by the pattern of X-ray diffraction. The monosaccharide composition was determined by GC/MS analysis of the alditol acetates and showed the occurrence of glucose:xylose:galactose:arabinose (40:34:20:6). One-(1D) and two-dimensional-(2D) NMR spectra confirmed a central backbone composed by 4-linked ß-glucose units partially branched at position 6 with non-reducing terminal units of α-xylose or ß-galactose-(1→2)-α-xylose disaccharides. The xyloglucan solution was evaluated by dynamic light scattering and presents a polydisperse and practically neutral profile, and at 0.5 and 1.0% (w/v) the solutions behave as a viscoelastic fluid. The polysaccharide did not show significant antibacterial or hemolytic activities. Overall our results indicate that xyloglucan from H. courbaril is a promising polysaccharide for food and pharmaceutical industries.


Asunto(s)
Glucanos/química , Hymenaea/química , Extractos Vegetales/química , Semillas/química , Xilanos/química , Antibacterianos/química , Antibacterianos/farmacología , Cromatografía en Gel , Glucanos/farmacología , Hemolíticos/química , Hemolíticos/farmacología , Metilación , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Extractos Vegetales/farmacología , Reología , Difracción de Rayos X , Xilanos/farmacología
12.
J Agric Food Chem ; 59(10): 5589-94, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21491929

RESUMEN

In this work, in vitro antioxidant activity of two Brazilian red seaweeds, Gracilaria birdiae and Gracilaria cornea, was characterized. The total phenolic content, the radical-scavenging activity and the antioxidant activity were determined in two solvent extracts of the algae. Liquid chromatography-mass spectrometry (LC-MS/MS) allowed identification of important antioxidant compounds. The ethanol extract of G. birdiae was found to have the highest value of total phenolic content: 1.13 mg of gallic acid equiv (GAE)/g of extract. The radical-scavenging activity of G. birdiae and G. cornea extracts has been evaluated at different extract concentrations; the IC(50) values of ethanolic extracts of G. cornea and G. birdiae were 0.77 and 0.76 mg mL(-1), respectively, while for methanolic extracts, the IC(50) values of G. cornea and G. birdiae were 0.86 and 0.76 mg mL(-1), respectively. The antioxidant activities of these two seaweeds' extracts as assessed by the ß-carotene-linoleic acid assay were equally high, achieving values of ß-carotene oxidation inhibition of up to 40%. Finally, in the methanolic extracts, LC-MS/MS allowed identification in both algae of two important antioxidants: apigenin and gallic acid.


Asunto(s)
Antioxidantes/análisis , Gracilaria/química , Antioxidantes/farmacología , Apigenina/análisis , Brasil , Depuradores de Radicales Libres/análisis , Depuradores de Radicales Libres/farmacología , Ácido Gálico/análisis , Oxidación-Reducción , Fenoles/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , beta Caroteno/química
13.
Appl Biochem Biotechnol ; 154(1-3): 38-47, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19214797

RESUMEN

Ethanol/water organosolv pulping was used to obtain sugarcane bagasse pulp that was bleached with sodium chlorite. This bleached pulp was used to obtain cellulosic films that were further evaluated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). A good film formation was observed when temperature of 74 degrees C and baths of distilled water were used, which after FTIR, TGA, and SEM analysis indicated no significant difference between the reaction times. The results showed this to be an interesting and promising process, combining the prerequisites for a more efficient utilization of agro-industrial residues.


Asunto(s)
Celulosa/química , Óxidos N-Cíclicos/química , Morfolinas/química , Saccharum/química , Celulosa/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
14.
Appl Biochem Biotechnol ; 153(1-3): 34-43, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19082923

RESUMEN

Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e.g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.


Asunto(s)
Tecnología de Alimentos/métodos , Musa/química , Bebidas , Biotecnología/métodos , Extractos Vegetales/química , Factores de Tiempo
15.
Appl Biochem Biotechnol ; 155(1-3): 356-65, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19089653

RESUMEN

Traditionally, the raw materials for beer production are barley, hops, water, and yeast, but most brewers use also different adjuncts. During the alcoholic fermentation, the contribution of aroma compounds from other ingredients to the final beer flavor depends on the wort composition, on the yeast strain, and mainly on the process conditions. In this context, banana can also be a raw material favorable to alcoholic fermentation being rich in carbohydrates and minerals and providing low acidity. In this work, the objective was to evaluate the performance of wort adjusted with banana juice in different concentrations. For this, static fermentations were conducted at 15 degrees C at pilot scale (140 L of medium). The addition of banana that changed the concentration of all-malt wort from 10 degrees P to 12 and 15 degrees P were evaluated ( degrees P is the weight of the extract or the sugar equivalent in 100 g solution, at 20 degrees C). The results showed an increase in ethanol production, with approximately 0.4 g/g ethanol yield and 0.6 g/L h volumetric productivity after 84 h of processing when concentrated wort was used. Thus, it was concluded that banana can be used as an adjunct in brewing methods, helping in the development of new products as well as in obtaining concentrated worts.


Asunto(s)
Cerveza , Fermentación/fisiología , Tecnología de Alimentos/métodos , Musa/metabolismo , Microbiología Industrial/métodos , Musa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA