Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ind Eng Chem Res ; 62(10): 4191-4209, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36943762

RESUMEN

The control of infectious diseases can be improved via carefully designed decontamination equipment and systems. Research interest in ozone (a powerful antimicrobial agent) has significantly increased over the past decade. The COVID-19 pandemic has also instigated the development of new ozone-based technologies for the decontamination of personal protective equipment, surfaces, materials, and indoor environments. As this interest continues to grow, it is necessary to consider key factors affecting the applicability of lab-based findings to large-scale systems utilizing ozone. In this review, we present recent developments on the critical factors affecting the successful deployments of industrial ozone technologies. Some of these include the medium of application (air or water), material compatibility, efficient circulation and extraction, measurement and control, automation, scalability, and process economics. We also provide a comparative assessment of ozone relative to other decontamination methods/sterilization technologies and further substantiate the necessity for increased developments in gaseous and aqueous ozonation. Modeling methodologies, which can be applied for the design and implementation of ozone contacting systems, are also presented in this review. Key knowledge gaps and open research problems/opportunities are extensively covered including our recommendations for the development of novel solutions with industrial importance.

2.
Sci Rep ; 9(1): 12944, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506561

RESUMEN

In regenerative medicine, techniques which control stem cell lineage commitment are a rapidly expanding field of interest. Recently, nanoscale mechanical stimulation of mesenchymal stem cells (MSCs) has been shown to activate mechanotransduction pathways stimulating osteogenesis in 2D and 3D culture. This has the potential to revolutionise bone graft procedures by creating cellular graft material from autologous or allogeneic sources of MSCs without using chemical induction. With the increased interest in mechanical stimulation of cells and huge potential for clinical use, it is apparent that researchers and clinicians require a scalable bioreactor system that provides consistently reproducible results with a simple turnkey approach. A novel bioreactor system is presented that consists of: a bioreactor vibration plate, calibrated and optimised for nanometre vibrations at 1 kHz, a power supply unit, which supplies a 1 kHz sine wave signal necessary to generate approximately 30 nm of vibration amplitude, and custom 6-well cultureware with toroidal shaped magnets incorporated in the base of each well for conformal attachment to the bioreactor's magnetic vibration plate. The cultureware and vibration plate were designed using finite element analysis to determine the modal and harmonic responses, and validated by interferometric measurement. This helps ensure that the vibration plate and cultureware, and thus collagen and MSCs, all move as a rigid body, avoiding large deformations close to the resonant frequency of the vibration plate and vibration damping beyond the resonance. Assessment of osteogenic protein expression was performed to confirm differentiation of MSCs after initial biological experiments with the system, as well as atomic force microscopy of the 3D gel constructs during vibrational stimulation to verify that strain hardening of the gel did not occur. This shows that cell differentiation was the result of the nanovibrational stimulation provided by the bioreactor alone, and that other cell differentiating factors, such as stiffening of the collagen gel, did not contribute.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Mecanotransducción Celular , Células Madre Mesenquimatosas/citología , Osteogénesis , Ingeniería de Tejidos/métodos , Células Cultivadas , Diseño de Equipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA