Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 137
1.
Reprod Fertil Dev ; 362024 May.
Article En | MEDLINE | ID: mdl-38739740

Context A maternal high-fat diet is thought to pose a risk to spermatogenesis in the progeny. Aims We tested whether a maternal high-fat diet would affect Sertoli cell expression of transcription factors (insulin-like growth factor I (IGF-I); glial-cell line-derived neurotrophic factor (GDNF); Ets variant 5 (ETV5)) and cell proliferation and apoptotic proteins, in the testis of adult offspring. Methods Pregnant rats were fed ad libitum with a standard diet (Control) or a high-fat diet (HFat) throughout pregnancy and lactation. After weaning, male pups were fed the standard diet until postnatal day 160. Males were monitored daily from postnatal day 34 to determine onset of puberty. On postnatal day 160, their testes were processed for morphometry and immunohistochemistry. Key results The HFat diet increased seminiferous-tubule diameter (P P P P P P P P Conclusions A maternal high-fat diet alters the balance between spermatogonia proliferation and spermatid apoptosis. Implications A maternal high-fat diet seems to 'program' adult male fertility.


Apoptosis , Cell Proliferation , Diet, High-Fat , Lactation , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Testis , Animals , Female , Male , Pregnancy , Apoptosis/physiology , Lactation/physiology , Testis/metabolism , Testis/pathology , Rats , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/metabolism , Maternal Nutritional Physiological Phenomena/physiology , Spermatogenesis/physiology , Sertoli Cells/metabolism , Sertoli Cells/pathology , Insulin-Like Growth Factor I/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Rats, Wistar
2.
Front Nutr ; 10: 1282376, 2023.
Article En | MEDLINE | ID: mdl-37915619

Rational: Maternal overweight/obesity and gestational diabetes mellitus (GDM) are associated with an increased risk of their offspring developing overweight/obesity or type 2 diabetes later in life. However, the impacts of maternal overweight/obesity and dysglycemia on human milk (HM) macronutrient composition are not well understood. Objective: Through a double-blind randomised controlled trial, we investigated the effects of maternal supplementation from preconception throughout pregnancy until birth on HM macronutrient concentrations, in association with maternal and infant factors including maternal pre-pregnancy body mass index (BMI) and GDM status. In addition, we aimed to characterise longitudinal changes in HM macronutrients. Methods: The control supplement contained calcium, iodine, iron, ß-carotene, and folic acid. The intervention supplement additionally contained zinc, vitamins B2, B6, B12, and D3, probiotics, and myo-inositol. HM samples were collected across seven time points from 1 week to 12 months from Singapore and/or New Zealand. HM macronutrient concentrations were measured using a MIRIS Human Milk Analyser. Potential differences in HM macronutrient concentrations were assessed using linear mixed models with a repeated measures design. Results: Overall, HM macronutrient concentrations were similar between control and intervention groups. Among the control group, overweight/obesity and GDM were associated with higher HM fat and energy concentrations over the first 3 months. Such associations were not observed among the intervention group. Of note, mothers with GDM in the intervention group had lower HM fat by 10% (p = 0.049) and energy by 6% (p = 0.029) than mothers with GDM in the control group. Longitudinal changes in HM macronutrient concentrations over 12 months of lactation in New Zealand showed that HM fat and energy decreased in the first 6 months then increased until 12 months. HM lactose gradually decreased from 1 week to 12 months while crude protein decreased from 1 week to 6 months then remained relatively constant until 12 months of lactation. Conclusion: Maternal overweight/obesity or GDM were associated with increased HM fat and energy levels. We speculate the intervention taken during preconception and pregnancy altered the impact of maternal BMI or GDM status on HM macronutrient composition. Further studies are required to identify the mechanisms underlying altered HM macronutrient concentration in the intervention group and to determine any long-term effects on offspring health. Clinical trial registration: ClinicalTrials.gov, NCT02509988, Universal Trial Number U1111-1171-8056. Registered on 16 July 2015. This is an academic-led study by the EpiGen Global Research Consortium.

3.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37762694

Ectopic lipid accumulation, including intra-pancreatic fat deposition (IPFD), exacerbates type 2 diabetes risk in susceptible individuals. Dysregulated circulating microRNAs (miRNAs) have been identified as correlating with clinical measures of pancreatitis, pancreatic cancer and type 1 diabetes. The aim of the current study was therefore to examine the association between circulating abundances of candidate miRNAs, IPFD and liver fat deposition as quantified using magnetic resonance imaging (MRI) and spectroscopy (MRS). Asian Chinese (n = 34; BMI = 26.7 ± 4.2 kg/m2) and European Caucasian (n = 34; BMI = 28.0 ± 4.5 kg/m2) females from the TOFI_Asia cohort underwent MRI and MRS analysis of pancreas (MR-%IPFD) and liver fat (MR-%liver fat), respectively, to quantify ectopic lipid deposition. Plasma miRNA abundances of a subset of circulatory miRNAs associated with IPFD and liver fat deposition were quantified by qRT-PCR. miR-21-3p and miR-320a-5p correlated with MR-%IPFD, plasma insulin and HOMA2-IR, but not MR-%liver fat. MR-%IPFD remained associated with decreasing miR-21-3p abundance following multivariate regression analysis. miR-21-3p and miR-320a were demonstrated to be negatively correlated with MR-%IPFD, independent of ethnicity. For miR-21-3p, this relationship persists with the inclusion of MR-%liver fat in the model, suggesting the potential for a wider application as a specific circulatory correlate of IPFD.

4.
Nutrients ; 15(11)2023 May 29.
Article En | MEDLINE | ID: mdl-37299497

Growing evidence has demonstrated that maternal artificial sweetener (AS) consumption may not be a beneficial alternative when compared to sugar-sweetened beverages and potentially leads to metabolic dysfunction in adult offspring. Compromised skin integrity and wound healing associated with type 2 diabetes can lead to complications such as diabetic pressure injury (PI). In this context, the skin plays an important role in the maintenance of metabolic homeostasis, yet there is limited information on the influence of sugar- or AS-sweetened beverages during pregnancy on developmental programming and offspring skin homeostasis. This study examined the impact of maternal fructose or acesulfame-k consumption on offspring wound healing. Female C57Bl/6 mice received a chow diet ad libitum with either water (CD), fructose (FR; 34.7 mM fructose), or AS (AS; 12.5 mM Acesulfame-K) throughout pregnancy and lactation. PIs were induced in offspring at 9 weeks of age (n = 6/sex/diet). PIs and healthy skin biopsies were collected for later analysis. Maternal AS intake increased skin inflammatory markers in healthy biopsies while an FR diet increased Tgfb expression, and both diets induced subtle changes in inflammatory markers post-wound inducement in a sex-specific manner. Furthermore, a maternal FR diet had a significant effect on pressure wound severity and early wound healing delay, while AS maternal diet had a sex-specific effect on the course of the healing process. This study demonstrates the need for a better understanding of developmental programming as a mediator of later-life skin integrity and wound responsiveness.


Diabetes Mellitus, Type 2 , Prenatal Exposure Delayed Effects , Pregnancy , Male , Animals , Mice , Female , Humans , Fructose/adverse effects , Fructose/metabolism , Sweetening Agents/pharmacology , Pilot Projects , Wound Healing , Inflammation , Maternal Nutritional Physiological Phenomena
5.
J Cell Commun Signal ; 17(3): 925-937, 2023 Sep.
Article En | MEDLINE | ID: mdl-37043098

Growth hormone (GH) actions are mediated through binding to its cell-surface receptor, the GH receptor (GHR), with consequent activation of downstream signalling. However, nuclear GHR localisation has also been observed and is associated with increased cancer cell proliferation. Here we investigated the functional implications of nuclear translocation of the GHR in the human endometrial cancer cell-line, RL95-2, and human mammary epithelial cell-line, MCF-10A. We found that following GH treatment, the GHR rapidly translocates to the nucleus, with maximal localisation at 5-10 min. Combined immunoprecipitation-mass spectrometry analysis of RL95-2 whole cell lysates identified 40 novel GHR binding partners, including the transcriptional regulator, HMGN1. Moreover, microarray analysis demonstrated that the gene targets of HMGN1 were differentially expressed following GH treatment, and co-immunoprecipitation showed that HMGN1 associates with the GHR in the nucleus. Therefore, our results suggest that GHR nuclear translocation might mediate GH actions via interaction with chromatin factors that then drive changes in specific downstream transcriptional programs.

6.
Br J Nutr ; 129(10): 1667-1676, 2023 05 28.
Article En | MEDLINE | ID: mdl-35949001

Paediatric fatty liver disease (FLD) can develop into steatohepatitis, cirrhosis and hepatocellular carcinoma in adulthood. We assessed if early life physical exercise reduced the effects of high-fat (HF) diet-induced steatosis. Male HF-fed rats with access to a running wheel from weaning until day (D)60 (early exercise) or from D67 to D120 (late exercise) were compared with control HF- or chow-fed groups with no wheel. At D63 and D120, liver histopathology (Kleiner score), type I collagen and plasma enzymes were assessed. At D63, early life activity significantly reduced histopathology scores (total, portal inflammation, steatosis, ballooning, but not lobular inflammation or fibrosis) and the number of rats affected. At D120, HF control scores were higher than in chow-fed controls, but the effect of activity was selective: early exercise reduced portal inflammation, steatosis, ballooning and fibrosis, but late activity affected only portal inflammation and ballooning. The chow-fed portal inflammation score was significantly less than all HF groups, but lobular inflammation was lower in the HF control group only. The fibrosis score in the HF early exercise and control chow group were lower than in the late exercise and sedentary HF groups, indicating that early life exercise was more effective than when activity was introduced later in life. Plasma biomarkers showed minor between-group differences. The retained effect on liver histopathology rat at D120 after only early life exposure activity suggests that timing of introduction of exercise is critical in reducing FLD scores and prevalence in children, young adults and possibly into adulthood.


Diet, High-Fat , Non-alcoholic Fatty Liver Disease , Rats , Male , Animals , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Liver , Inflammation/pathology , Fibrosis
7.
J Dev Orig Health Dis ; 14(2): 166-174, 2023 04.
Article En | MEDLINE | ID: mdl-36345774

Evidence clearly indicates that the nutritional and non-nutritional environment and level of physical activity during the early-life period from preconception through infancy has a lifelong impact on the child's health. However this message must be communicated effectively to parents and other stakeholders such as grandparents, health professionals, policymakers and the wider community in order for positive change to occur. This systematic review explores how both awareness and understanding of the long-term effects of the early-life environment have been measured in various populations and whether any patterns are evident. Ten articles were retrieved via a search of Embase, Medline and Scopus databases for peer-reviewed studies designed to assess participants' knowledge of the links between early-life exposures and adult health. Eligible articles spanned a wide range of countries, population groups and research methods. Three common themes were identified using thematic analysis: 1. a tendency for researchers to conflate participant understanding of the issue (the WHY) with a knowledge of key phrases and nutrition guidelines (the WHAT); 2. bias in both researchers and participants towards short-term thinking due to difficulty conceptualising long-term risk; and 3. challenges in comprehending the complexity of the evidence resulting in oversimplification and the overemphasis of maternal factors. Taken together these findings underscore the importance of a multi-level, whole-of-society approach to communicating the evidence, with the goal of influencing policy decisions as well as building a foundation of community support for parents and prospective parents to create a healthy early-life environment for the long-term wellbeing of all.


Exercise , Grandparents , Child , Humans , Adult , Prospective Studies , Databases, Factual , Family
8.
Clin Nutr ; 42(12): 2443-2456, 2023 12.
Article En | MEDLINE | ID: mdl-38411017

BACKGROUND & AIMS: Optimal maternal vitamin status during pregnancy and lactation is essential to support maternal and infant health. For instance, vitamin D3 is involved in infant bone development, and B-vitamins are involved in various metabolic processes, including energy production. Through a double-blind randomised controlled trial, we investigated the effects of maternal supplementation from preconception throughout pregnancy until birth on human milk (HM) concentrations of vitamin D3 and B-vitamins. In addition, we aimed to characterise longitudinal changes in milk concentrations of these vitamins. METHODS: Both control and intervention supplements contained calcium, iodine, iron, ß-carotene, and folic acid, while the intervention also contained zinc, vitamins B2, B6, B12, and D3, probiotics, and myo-inositol. HM samples were collected across 4 time points from 1 week to 3 months post-delivery from 158 mothers in Singapore, and 7 time points from 1 week to 12 months from 180 mothers in New Zealand. HM vitamin D was quantified using supercritical fluid chromatography and B-vitamins with mass spectrometry. Potential intervention effects on HM vitamins D3, B2, B6, and B9, as well as other B-vitamin (B1 and B3) concentrations were assessed using linear mixed models with a repeated measures design. RESULTS: Over the first 3 months of lactation, HM 25-hydroxyvitamin D3 concentrations were 20% (95% CI 8%, 33%, P = 0.001) higher in the intervention group, with more marked effects in New Zealand. There were no observed intervention effects on HM concentrations of vitamins B1, B2, B3, B6, and B9. In New Zealand mothers, longitudinally, vitamin D3 concentrations gradually increased from early lactation up to 12 months, while vitamins B1 and B2 peaked at 6 weeks, B3 at 3 weeks, and B6 and B9 at 3 months. CONCLUSIONS: Maternal supplementation during preconception and pregnancy increased HM vitamin D, but not B-vitamin concentrations in lactation. Further studies are required to examine the discrete benefits of vitamin D supplementation starting preconception vs during pregnancy, and to further characterise the effects of supplementation on later offspring health outcomes. CLINICAL TRIAL REGISTRATION: Registered at ClinicalTrials.gov on the 16 July 2015 (identifier NCT02509988); Universal Trial Number U1111-1171-8056. This study was academic-led by the EpiGen Global Research Consortium.


Vitamin D , Vitamins , Pregnancy , Infant , Female , Humans , Vitamins/analysis , Vitamin D/analysis , Milk, Human/chemistry , Dietary Supplements , Cholecalciferol , Lactation , Vitamin A/analysis , Double-Blind Method
9.
Article En | MEDLINE | ID: mdl-36498013

Rates of noncommunicable diseases (NCDs) are disproportionately high among people of Pacific ethnicity. Nutrition-related environmental exposures including food access and quality contribute to the matrix of factors impacting risk. Preventative interventions in adolescence and the opportunity to integrate health promotion into school-based learning are often overlooked. This study tested the potential of a low-cost method to map the retail food environment in a 1 km radius of two secondary schools in low socioeconomic communities with predominantly Pacific populations, in Tonga and New Zealand (NZ). Mapping utilized Google Earth, Google Maps, government maps, and observations. A rubric was developed to categorize food quality. Outlets within a 1 km radius of each school, (Tonga, n = 150; NZ, n = 52) stocked predominantly unhealthy foods. The NZ data compared favorably to previous studies, indicating the method was valid. The Tongan data is novel and indicates that alternative strategies can be used when access to GIS-type tools is limited. The method produced visual data that has the potential to be analyzed using strategies appropriate for secondary schools. The method should now be tested in classrooms to assess its potential to support school-age students to engage in mapping and critiquing the retail food environment.


Diet , Schools , Adolescent , Humans , New Zealand , Food , Students
10.
Front Nutr ; 9: 965654, 2022.
Article En | MEDLINE | ID: mdl-36238462

Background: Glucocorticoids (GCs), cortisol and cortisone, are essential regulators of many physiological responses, including immunity, stress and mammary gland function. GCs are present in human milk (HM), but whether maternal and infant factors are associated with HM GC concentration following preterm birth is unclear. Materials and methods: HM samples were collected on postnatal day 5 and 10 and at 4 months' corrected age (4m CA) in a cohort of moderate- and late-preterm infants. GCs in HM were measured by liquid chromatography-tandem mass spectrometry. Relationships between GCs in HM and both maternal and infant characteristics were investigated using Spearman's correlations and linear mixed models. Results: 170 mothers of 191 infants provided 354 HM samples. Cortisol concentrations in HM increased from postnatal day 5-4m CA (mean difference [MD] 0.6 ± 0.1 ng/ml, p < 0.001). Cortisone concentration did not change across lactation but was higher than cortisol throughout. Compared to no antenatal corticosteroid (ANS), a complete course of ANS was associated with lower GC concentrations in HM through to 4m CA (cortisol: MD -0.3 ± 0.1 ng/ml, p < 0.01; cortisone MD -1.8 ± 0.4 ng/ml, p < 0.001). At 4m CA, higher maternal perceived stress was negatively associated with GC concentrations in HM (cortisol adjusted beta-coefficient [aß] -0.01 ± 0.01 ng/ml, p = 0.05; and cortisone aß -0.1 ± 0.03 ng/ml, p = 0.01), whereas higher postpartum depression and maternal obesity were associated with lower cortisone concentrations (aß -0.1 ± 0.04 ng/ml p < 0.05; MD [healthy versus obese] -0.1 ± 0.04 ng/ml p < 0.05, respectively). There was a weak positive correlation between GC concentrations in HM and gestational age at birth (r = 0.1, p < 0.05). Infant birth head circumference z-score was negatively associated with cortisol concentrations (aß -0.01 ± 0.04 ng/ml, p < 0.05). At hospital discharge, fat-free mass showed a weak positive correlation with cortisol concentrations (r = 0.2, p = 0.03), while fat mass showed a weak negative correlation with cortisone concentrations (r = -0.25, p < 0.001). Conclusion: The mammary gland appears to protect the infant from cortisol through inactivation into cortisone. Maternal and infant characteristics were associated with concentration of GCs in HM, including ANS, stress and depression scores, obesity, gestational age and infant size. The effects of HM glucocorticoids on long-term health outcomes requires further research.

11.
Front Nutr ; 9: 968443, 2022.
Article En | MEDLINE | ID: mdl-36118754

Introduction: In rats, a maternal high-fat diet (HFD) leads to adverse metabolic changes in the adult offspring, similar to the children of mothers with obesity during pregnancy. Supplementation with a high dose of fish oil (FO) to pregnant rats fed a HFD has been shown to prevent the development of insulin resistance in adult offspring. However, the effects of supplementation at a translationally relevant dose remain unknown. Aim: To determine whether supplementation with a human-relevant dose of FO to pregnant rats can prevent the long-term adverse metabolic and cardiovascular effects of a maternal HFD on adult offspring. Methods: Female rats (N = 100, 90 days of age) were assigned to HFD (45% kcal from fat) or control diet (CD) for 14 days prior to mating and throughout pregnancy and lactation. Following mating, dams received a gel containing 0.05 ml of FO (human equivalent 2-3 ml) or a control gel on each day of pregnancy. This produced 4 groups, CD with control gel, CD with FO gel, HFD with control gel and HFD with FO gel. Plasma and tissue samples were collected at day 20 of pregnancy and postnatal day 2, 21, and 100. Adult offspring were assessed for insulin sensitivity, blood pressure, DXA scan, and 2D echocardiography. Results: There was an interaction between maternal diet and FO supplementation on insulin sensitivity (p = 0.005) and cardiac function (p < 0.01). A maternal HFD resulted in impaired insulin sensitivity in the adult offspring (p = 0.005 males, p = 0.001 females). FO supplementation in the context of a maternal HFD prevented the reduction in insulin sensitivity in offspring (p = 0.05 males, p = 0.0001 females). However, in dams consuming CD, FO supplementation led to impaired insulin sensitivity (p = 0.02 males, p = 0.001 females), greater body weight and reduced cardiac ejection fraction. Conclusion: The effects of a human-relevant dose of maternal FO on offspring outcomes were dependent on the maternal diet, so that FO was beneficial to the offspring if the mother consumed a HFD, but deleterious if the mother consumed a control diet. This study suggests that supplementation with FO should be targeted to women expected to have abnormalities of metabolism such as those with overweight and obesity.

12.
Am J Physiol Regul Integr Comp Physiol ; 323(2): R244-R254, 2022 08 01.
Article En | MEDLINE | ID: mdl-35726870

Fish oil (FO) supplements are consumed during pregnancy to increase dietary omega-3. However, FO is often oxidized past recommended limits. In rats, a large dose of highly oxidized FO substantially increased newborn mortality, but the effects of human-relevant doses of less oxidized oil are unknown. A dose-response study in rats was conducted to estimate the safe level of oxidation during pregnancy. Sprague-Dawley rat dams were mated, then individually housed and provided with a gel treatment on each day of pregnancy. Treatment groups differed only in the FO content of the gel; control (no oil), PV5, PV10, and PV40 [0.05 mL of FO oxidized to a peroxide value (PV) of 5, 10, or 40 meq/kg], or PV40(1 mL) (1 mL of PV40). A subset of dams was culled on gestational day 20 to enable sampling, and the remainder were allowed to give birth. Newborn mortality was recorded. Offspring were sampled on postnatal days 2 and 21, and dams on day 21. There were no signs of unwellness during pregnancy. However, there was markedly increased neonatal mortality affecting the PV40(1 mL) (12.8%) and PV40 (6.3%) groups, but not the control, PV5, or PV10 groups (1%-1.4%). Dietary-oxidized FO altered the expression of placental genes involved in antioxidant pathways and the production of free radicals. Highly oxidized FO was toxic in rat pregnancy leading to a marked increase in mortality even at a human-relevant dose. We observed no toxic effects of FOs with PV ≤10 meq/kg, suggesting that this is an appropriate maximum limit.


Fish Oils , Placenta , Animals , Diet , Dietary Supplements , Female , Fish Oils/toxicity , Humans , Pregnancy , Rats , Rats, Sprague-Dawley
13.
Front Nutr ; 9: 867661, 2022.
Article En | MEDLINE | ID: mdl-35387190
14.
J Dev Orig Health Dis ; 13(5): 642-649, 2022 10.
Article En | MEDLINE | ID: mdl-35322784

As rates of obesity, diabetes, and related comorbidities have increased, the consumption of artificial sweeteners (ASs) as sugar substitutes has also risen in popularity as they are perceived as a healthier alternative to sugar sweetened products. However, there is conflicting evidence regarding the impact of AS intake on metabolic and reproductive health. Glucose intolerance during pregnancy due to intake of sugar sweetened foods can result in an increased risk for the development of type 2 diabetes post-pregnancy. However, limited information exists on the impact of AS intake during pregnancy and lactation on the mother's health in later life. We hypothesised both AS and fructose would impair metabolic health post-partum (PP) following maternal consumption during pregnancy and lactation. Female C57Bl/6 mice received a standard control diet ad libitum with either water (CD), fructose (Fr; 34.7 mm intake), or AS (AS;12.5 mm Acesulfame-K) throughout pregnancy and lactation. Post-weaning, AS and Fr dams were fed the CD diet for the remainder of the experiment. Oral glucose tolerance tests were undertaken 8 weeks PP and dams were humanely killed at 9 weeks PP, with adipose tissue and ovaries collected for analysis. Experimental diets did not influence maternal bodyweight. At 8 weeks PP, increased glucose intolerance was evident in both AS and Fr dams. Adipocyte size was significantly increased in both the AS and Fr groups PP. Further, in the ovary, AS increased expression of genes associated with follicular development and ovulation. Therefore, ASs may not represent beneficial substitutes to fructose during pregnancy, with the potential to increase the risk of T2DM in later life in mothers.


Diabetes Mellitus, Type 2 , Glucose Intolerance , Prenatal Exposure Delayed Effects , Animals , Female , Humans , Mice , Pregnancy , Diabetes Mellitus, Type 2/etiology , Fructose/adverse effects , Glucose Intolerance/etiology , Lactation/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Reproductive Health , Sweetening Agents/adverse effects , Weaning
15.
Int Orthop ; 46(5): 1181-1190, 2022 05.
Article En | MEDLINE | ID: mdl-35201374

BACKGROUND: Tendinopathy is a major complication of diet-induced obesity. However, the effects of a high-fat diet (HFD) on tendon have not been well characterised. We aimed to determine: [1] the impact of a HFD on tendon properties and gene expression; and [2] whether dietary transition to a control diet (CD) could restore normal tendon health. METHODS: Sprague-Dawley rats were randomised into three groups from weaning and fed either a: CD, HFD or HFD for 12 weeks and then CD thereafter (HF-CD). Biomechanical, histological and structural evaluation of the Achilles tendon was performed at 17 and 27 weeks of age. Tail tenocytes were isolated with growth rate and collagen production determined. Tenocytes and activated THP-1 cells were exposed to conditioned media (CM) of visceral adipose tissue explants, and gene expression was analysed. RESULTS: There were no differences in the biomechanical, histological or structural tendon properties between groups. However, tenocyte growth and collagen production were increased in the HFD group at 27 weeks. There was lower SOX-9 expression in the HFD and HF-CD groups at 17 weeks and higher expression of collagen-Iα1 and matrix metalloproteinase-13 in the HFD group at 27 weeks. THP-1 cells exposed to adipose tissue CM from animals fed a HFD or HF-CD had lower expression of Il-10 and higher expression of Il-1ß. CONCLUSIONS: In this rodent model, a HFD negatively altered tendon cell characteristics. Dietary intervention restored some gene expression changes; however, adipose tissue secretions from the HF-CD group promoted an increased inflammatory state in macrophages. These changes may predispose tendon to injury and adverse events later in life.


Achilles Tendon , Diet, High-Fat , Animals , Rats , Achilles Tendon/pathology , Collagen , Diet, High-Fat/adverse effects , Obesity/complications , Rats, Sprague-Dawley
16.
Asia Pac J Public Health ; 34(1): 118-122, 2022 01.
Article En | MEDLINE | ID: mdl-34550035

While research into the developmental origins of health and disease (DOHaD) has highlighted the potential of healthy early-life environments for later noncommunicable disease risk reduction, such research is lacking in developing contexts. This study is set in Rarotonga, Cook Islands, a small island developing state in the Pacific-population 17 434. Adult overweight/obesity rates are 89.5%/69.8% and raised blood glucose affects 23.5%. This study investigates early-life associations with later-life health by matching birth weight and adolescent health indicators in Rarotongan-born students from 2016 to 2018. Of 195 students, median age 13 years, 67.7% were overweight/obese, 45.7% had central obesity, and 42.7% had raised blood pressure. A significant inverse association was found between birth weight and central obesity (P = .043). This is the first DOHaD study in a Pacific Island country and demonstrates the importance of prioritizing investment in the early-life environment to optimize later-life health and contribute to reducing the global noncommunicable disease burden.


Adolescent Health , Overweight , Adolescent , Adult , Birth Weight , Humans , Obesity , Overweight/epidemiology , Polynesia
17.
Front Nutr ; 9: 1034828, 2022.
Article En | MEDLINE | ID: mdl-36704795

Introduction: During pregnancy and lactation minerals such as zinc are required to support maternal and infant health. Zinc is involved in various cellular processes, with requirements increasing in pregnancy and lactation. In the setting of a randomized trial, we investigated the effects on human milk (HM) zinc concentrations of a micronutrient-containing supplement including zinc in the intervention (but not control) group, started preconception and taken throughout pregnancy until birth. Additionally, we characterized longitudinal changes in HM concentrations of zinc and other minerals (calcium, copper, iodine, iron, magnesium, manganese, phosphorus, potassium, selenium, and sodium). Methods: HM samples were collected across 7 time points from 1 week to 12 months from lactating mothers from Singapore (n = 158) and New Zealand (n = 180). HM minerals were quantified using sector field inductively coupled plasma mass spectrometry. Potential intervention effects on HM mineral concentrations were assessed using linear mixed models with a repeated measures design and time-weighted area-under-the-curve analyses. Results: Over the first 3 months of lactation, HM zinc concentrations were 11% higher in the intervention group compared to the control group (p = 0.021). Higher HM zinc concentrations were most evident at 6 weeks of lactation. The intervention had no effect on HM concentrations of other minerals, which were not differently supplemented to the control and intervention groups. Temporal changes in HM minerals over 12 months of lactation were studied in the New Zealand mothers; HM zinc and copper concentrations progressively decreased throughout 12 months, while iron, potassium, sodium, and phosphorus decreased until 6 months then plateaued. HM calcium and magnesium initially increased in early lactation and iodine remained relatively constant throughout 12 months. HM manganese and selenium fell over the initial months of lactation, with a nadir at 6 months, and increased thereafter. The contrasting patterns of changes in HM mineral concentrations during lactation may reflect different absorption needs and roles at different stages of infancy. Discussion: Overall, this study indicates that HM zinc concentrations are influenced by maternal supplementation during preconception and pregnancy. Further studies are required to understand the associations between HM zinc and other minerals and both short- and long-term offspring outcomes. Trial registration: ClinicalTrials.gov, identifier: NCT02509988, Universal Trial Number U1111-1171-8056. Registered on 16 July 2015. This is an academic-led study by the EpiGen Global Research Consortium.

18.
Front Nutr ; 8: 745203, 2021.
Article En | MEDLINE | ID: mdl-34938757

Guidelines advising pregnant women to avoid food and beverages with high fat and sugar have led to an increase in the consumption of "diet" options sweetened by artificial sweeteners (AS). Yet, there is limited information regarding the impact of AS intake during pregnancy on the long-term risk of cardiometabolic and reproductive complications in adult offspring. This study examined the influence of maternal acesulfame-K (Ace-K) and fructose consumption on metabolic and reproductive outcomes in offspring. Pregnant C57BL/6 mice received standard chow ad-libitum with either water (CD), fructose (Fr; 20% kcal intake), or AS (AS; 12.5 mM Ace-K) throughout pregnancy and lactation (n = 8/group). Postweaning offspring were maintained on a CD diet for the remainder of the experiment. Body weight, food intake, and water intake were measured weekly. Oral glucose tolerance tests (OGTT) were undertaken at 12 weeks, and the offspring were culled at week 14. Female, but not male, AS groups exhibited decreased glucose tolerance compared to Fr. There was an increase in gonadal fat adipocyte size in male offspring from AS and Fr groups compared to CD groups. In female offspring, adipocyte size was increased in the Fr group compared to the CD group. In female, but not male offspring, there was a trend toward increase in Fasn gene expression in AS group compared to the CD group. Maternal AS and Fr also negatively impacted upon female offspring estrus cycles and induced alterations to markers associated with ovulation. In summary, exposure to Ace-k via the maternal diet leads to impaired glucose tolerance and impacts adipocyte size in a sex-specific manner as well as significantly affecting estrus cycles and related gene markers in female offspring. This has implications in terms of providing tailored dietary advice for pregnant women and highlights the potential negative influence of artificial sweetener intake in the context of intergenerational impacts.

19.
Am J Sports Med ; 49(14): 3959-3969, 2021 12.
Article En | MEDLINE | ID: mdl-34694156

BACKGROUND: Being overweight or obese is associated with poor outcomes and an increased risk of failure after rotator cuff (RC) surgery. However, the effect of obesity on enthesis healing has not been well characterized. HYPOTHESES: Diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of RC repair, and a dietary intervention in the perioperative period would improve enthesis healing. STUDY DESIGN: Controlled laboratory study. METHODS: Male Sprague-Dawley rats were divided into 3 weight-matched groups (n = 26 per group): control diet (CD), high-fat diet (HFD), or HFD until surgery and then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate repair. Animals were sacrificed, and RCs were harvested at 2 and 12 weeks after surgery for biomechanical and histological evaluations. Metabolic end points were assessed using dual-energy X-ray absorptiometry and plasma analyses. RESULTS: DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. At 12 weeks after surgery, the body fat percentage (P = .0021) and plasma leptin concentration (P = .0025) were higher in the HFD group compared with the CD group. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.20 (P = .0078), 4.98 (P = .0003), and 8.68 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P = .0278) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P = .0960). There were no differences in the biomechanical and histological results between the groups at 2 weeks after surgery. Body mass at the time of surgery, plasma leptin concentration, and body fat percentage were negatively correlated with histology scores and plasma leptin concentration was correlated with load to failure at 12 weeks after surgery. CONCLUSION: DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring a normal weight with dietary changes after surgery did not improve healing outcomes. CLINICAL RELEVANCE: Obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after surgery. Exploring interventions that improve the metabolic state of obese patients and counseling patients appropriately about their modest expectations after repair should be considered.


Rotator Cuff Injuries , Rotator Cuff , Animals , Biomechanical Phenomena , Humans , Male , Obesity , Rats , Rats, Sprague-Dawley , Rotator Cuff/surgery , Rotator Cuff Injuries/surgery , Wound Healing
20.
Front Nutr ; 8: 729427, 2021.
Article En | MEDLINE | ID: mdl-34589513

Background: Over half of women of reproductive age are now overweight or obese. The impact of maternal high-fat diet (HFD) is emerging as an important factor in the development and health of musculoskeletal tissues in offspring, however there is a paucity of evidence examining its effects on tendon. Alterations in the early life environment during critical periods of tendon growth therefore have the potential to influence tendon health that cross the lifespan. We hypothesised that a maternal HFD would alter biomechanical, morphological and gene expression profiles of adult offspring rotator cuff tendon. Materials and Methods: Female Sprague-Dawley rats were randomly assigned to either: control diet (CD; 10% kcal or 43 mg/g from fat) or HFD (45% kcal or 235 mg/g from fat) 14 days prior to mating and throughout pregnancy and lactation. Eight female and male offspring from each maternal diet group were weaned onto a standard chow diet and then culled at postnatal day 100 for tissue collection. Supraspinatus tendons were used for mechanical testing and histological assessment (cellularity, fibre organisation, nuclei shape) and tail tendons were collected for gene expression analysis. Results: A maternal HFD increased the elasticity (Young's Modulus) in the supraspinatus tendon of male offspring. Female offspring tendon biomechanical properties were not affected by maternal HFD. Gene expression of SCX and COL1A1 were reduced in male and female offspring of maternal HFD, respectively. Despite this, tendon histological organisation were similar between maternal diet groups in both sexes. Conclusion: An obesogenic diet during pregnancy increased tendon elasticity in male, but not female, offspring. This is the first study to demonstrate that maternal diet can modulate the biomechanical properties of offspring tendon. A maternal HFD may be an important factor in regulating adult offspring tendon homeostasis that may predispose offspring to developing tendinopathies and adverse tendon outcomes in later life.

...