Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Enzyme Inhib Med Chem ; 37(1): 1752-1764, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36124840

RESUMEN

A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesised, and characterised. These novel compounds, which contain a benzimidazole subunit were evaluated for their inhibitory activity against sEH and FLAP. Molecular modelling tools were applied to analyse structure-activity relationships (SAR) on both targets and to predict solubility and gastrointestinal (GI) absorption. The most promising dual inhibitors of these series are 5a, 6b, and 6c.


Asunto(s)
Bencimidazoles , Epóxido Hidrolasas , Proteínas Activadoras de la 5-Lipooxigenasa/metabolismo , Bencimidazoles/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Relación Estructura-Actividad
2.
ACS Med Chem Lett ; 10(1): 62-66, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30655948

RESUMEN

A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesized, and characterized by 1H NMR, 13C NMR, and elemental analysis. These novel compounds were biologically evaluated for their inhibitory activity against sEH and FLAP. Molecular modeling tools were applied to analyze structure-activity relationships (SAR) on both targets. Results show that even small modifications on the lead compound diflapolin markedly influence the inhibitory potential, especially on FLAP, suggesting very narrow SAR.

3.
Pharmaceuticals (Basel) ; 11(4)2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30314332

RESUMEN

The inverse electron-demand Diels-Alder reaction between 1,2,4,5-tetrazine (Tz) and trans-cyclooct-2-ene (TCO) has gained increasing attraction among extensive studies on click chemistry due to its exceptionally fast reaction kinetics and high selectivity for in vivo pretargeting applications including PET imaging. The facile two-step approach utilizing TCO-modified antibodies as targeting structures has not made it into clinics yet. An increase in the blood volume of humans in comparison to mice seems to be the major limitation. This study aims to show if the design of multimeric Tz-ligands by chelator scaffolding can improve the binding capacity and may lead to enhanced PET imaging with gallium-68. We utilized for this purpose the macrocyclic siderophore Fusarinine C (FSC) which allows conjugation of up to three Tz-residues due to three primary amines available for site specific modification. The resulting mono- di- and trimeric conjugates were radiolabelled with gallium-68 and characterized in vitro (logD, protein binding, stability, binding towards TCO modified rituximab (RTX)) and in vivo (biodistribution- and imaging studies in normal BALB/c mice using a simplified RTX-TCO tumour surrogate). The 68Ga-labelled FSC-based Tz-ligands showed suitable hydrophilicity, high stability and high targeting specificity. The binding capacity to RTX-TCO was increased according to the grade of multimerization. Corresponding in vivo studies showed a multimerization typical profile but generally suitable pharmacokinetics with low accumulation in non-targeted tissue. Imaging studies in RTX-TCO tumour surrogate bearing BALB/c mice confirmed this trend and revealed improved targeting by multimerization as increased accumulation in RTX-TCO positive tissue was observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA