RESUMEN
Zika virus (ZIKV) infection during pregnancy can lead to a set of congenital malformations known as Congenital ZIKV syndrome (CZS), whose main feature is microcephaly. The geographic distribution of CZS in Brazil during the 2015-2017 outbreak was asymmetrical, with a higher prevalence in the Northeast and Central-West regions of the country, despite the ubiquitous distribution of the vector Aedes aegypti, indicating that environmental factors could influence ZIKV vertical transmission and/or severity. Here we investigate the involvement of the most used agrochemicals in Brazil with CZS. First, we exposed human neuroblastoma SK-N-AS cells to the 15 frequently used agrochemical molecules or derivative metabolites able to cross the blood-brain barrier. We found that a derived metabolite from a widely used herbicide in the Central-West region, 2,4-dichlorophenoxyacetic acid (2,4D), exacerbates ZIKV neurotoxic effects in vitro. We validate this observation by demonstrating vertical transmission leading to microcephaly in the offspring of immunocompetent C57BL/6J mice exposed to water contaminated with 0.025 mg/L of 2,4D. Newborn mice whose dams were exposed to 2,4D and infected with ZIKV presented a smaller brain area and cortical plate size compared to the control. Also, embryos from animals facing the co-insult of ZIKV and 2,4D exposition presented higher Caspase 3 positive cells in the cortex, fewer CTIP2+ neurons and proliferative cells at the ventricular zone, and a higher viral load. This phenotype is followed by placental alterations, such as vessel congestion, and apoptosis in the labyrinth and decidua. We also observed a mild spatial correlation between CZS prevalence and 2,4D use in Brazil's North and Central-West regions, with R2 = 0.4 and 0.46, respectively. Our results suggest that 2,4D exposition facilitates maternal vertical transmission of ZIKV, exacerbating CZS, possibly contributing to the high prevalence of this syndrome in Brazil's Central-West region compared to other regions.
RESUMEN
CTL differentiation is controlled by the crosstalk of various transcription factors and epigenetic modulators. Uncovering this process is fundamental to improving immunotherapy and designing novel therapeutic approaches. In this study, we show that polycomb repressive complex 1 subunit chromobox (Cbx)4 favors effector CTL differentiation in a murine model. Cbx4 deficiency in CTLs induced a transcriptional signature of memory cells and increased the memory CTL population during acute viral infection. It has previously been shown that besides binding to H3K27me3 through its chromodomain, Cbx4 functions as a small ubiquitin-like modifier (SUMO) E3 ligase in a SUMO-interacting motifs (SIM)-dependent way. Overexpression of Cbx4 mutants in distinct domains showed that this protein regulates CTL differentiation primarily in an SIM-dependent way and partially through its chromodomain. Our data suggest a novel role of a polycomb group protein Cbx4 controlling CTL differentiation and indicated SUMOylation as a key molecular mechanism connected to chromatin modification in this process.
Asunto(s)
Complejo Represivo Polycomb 1 , Ubiquitina-Proteína Ligasas , Animales , Ratones , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
AIMS: To develop paediatric physiologically based pharmacokinetic modelling (PBPK) models of semaglutide to estimate the pharmacokinetic profile for subcutaneous injections in children and adolescents with healthy and obese body weights. METHODS: Pharmacokinetic modelling and simulations of semaglutide subcutaneous injections were performed using the Transdermal Compartmental Absorption & Transit model implemented in GastroPlus v.9.5 modules. A PBPK model of semaglutide was developed and verified in the adult population, by comparing the simulated plasma exposure with the observed data, and further scaled to the paediatric populations with normal and obese body weight. RESULTS: The semaglutide PBPK model was successfully developed in adults and scaled to the paediatric population. Our paediatric PBPK simulations indicated a significant increase in maximum plasma concentrations for the 10-14 years' paediatric population with healthy body weights, which was higher than the observed values in adults at the reference dose. Since gastrointestinal adverse events are related to increased semaglutide concentrations, peak concentrations outside the target range may represent a safety risk for this paediatric age group. Besides, paediatric PBPK models indicated that body weight was inversely related to semaglutide maximum plasma concentration, corroborating the consensus on the influence of body weight on semaglutide PK in adults. CONCLUSION: Paediatric PBPK was successfully achieved using a top-down approach and drug-related parameters. The development of unprecedented PBPK models will support paediatric clinical therapy for applying aid-safe dosing regimens for the paediatric population in diabetes treatment.
Asunto(s)
Modelos Biológicos , Obesidad , Adulto , Niño , Humanos , Adolescente , Peso Corporal , Obesidad/tratamiento farmacológico , Simulación por ComputadorRESUMEN
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder in adults, which is associated with a highly disabling condition. To date, ALS remains incurable, and the only drugs approved by the FDA for its treatment confer a limited survival benefit. Recently, SOD1 binding ligand 1 (SBL-1) was shown to inhibit in vitro the oxidation of a critical residue for SOD1 aggregation, which is a central event in ALS-related neurodegeneration. In this work, we investigated the interactions between SOD1 wild-type and its most frequent variants, i.e., A4V (NP_000445.1:p.Ala5Val) and D90A (NP_000445.1:p.Asp91Val), with SBL-1 using molecular dynamics (MD) simulations. The pharmacokinetics and toxicological profile of SBL-1 were also characterized in silico. The MD results suggest that the complex SOD1-SBL-1 remains relatively stable and interacts within a close distance during the simulations. This analysis also suggests that the mechanism of action proposed by SBL-1 and its binding affinity to SOD1 may be preserved upon mutations A4V and D90A. The pharmacokinetics and toxicological assessments suggest that SBL-1 has drug-likeness characteristics with low toxicity. Our findings, therefore, suggested that SBL-1 may be a promising strategy to treat ALS based on an unprecedented mechanism, including for patients with these frequent mutations.
RESUMEN
RESUMO O suicídio é subestimado e estigmatizado na sociedade e, quando relacionado ao trabalho, é ainda mais invisível. Este estudo procurou analisar a literatura científica sobre o risco de suicídio ou tentativa de suicídio entre trabalhadores e sua relação com fatores psicossociais e assédio no local de trabalho. Utilizou-se sete bases eletrônicas de dados e os descritores, em inglês: ["Work" OR "Workplace"] AND ["Occupational Stress" OR "Workplace Violence" OR "Harassment, Non-Sexual" OR "Sexual Harassment"] AND ["Suicide" OR "Suicide, Attempted"]. Estudos sobre "ideação suicida" e ocupações fora do contexto de trabalho foram excluídos da revisão. Seguindo as diretrizes do PRISMA, foram identificadas 1427 referências e 15 artigos foram selecionados. Apresentaram associação significativa com o risco de suicídio e/ou tentativa de suicídio: assédio no trabalho, elevadas demandas de trabalho, baixa autonomia, baixo apoio social, conflitos trabalho-família, receio de perder o emprego e insatisfação com o trabalho. Estresse grave no trabalho também apresentou associação com risco de suicídio, quando combinado ao estresse doméstico grave. Este estudo evidenciou que o medo de perder o emprego, assédio e fatores psicossociais no trabalho aumentam o risco de suicídio e tentativa de suicídio dos trabalhadores. Tais condições devem ser alvo de atenção no cuidado de trabalhadores.
ABSTRACT Suicide is underestimated and stigmatized in society and work-related suicide is even more invisible. This study aimed to analyze the scientific literature on the risk of suicide or attempted suicide among workers and its relationship with psychosocial factors, harassment and harassment in the workplace. An integrative literature review was carried out in seven databases, using the following descriptors: ["Work" OR "Workplace"] AND ["Occupational Stress" OR "Workplace Violence" OR "Harassment, Non-Sexual" OR "Sexual Harassment"] AND ["Suicide" OR "Suicide, Attempted"]. Studies focused on "suicidal ideation" and specifically related to certain occupations were excluded. According to PRISMA guidelines, 1427 references were identified and 15 articles were selected. There was a significant association between the risk of suicide and/or suicide attempt with harassment at work, high psychological and cognitive demands, low control/autonomy, fear of losing the job/be downgraded, work-family conflicts, poor social support, and job dissatisfaction. Severe work-related stress was also associated with the risk of suicide, when combined with severe domestic stress. This study showed that fear of losing a job, harassment and psychosocial factors at work increase the risk of suicide and attempted suicide. Such conditions should be focus of the attention on workers'care.
RESUMEN
Background and Aims: Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated host immune response to an infection. Curcumin is a yellow polyphenol derived from the rhizome of Curcuma longa with anti-inflammatory and antioxidant properties scientifically proven, a condition that allowed its use as a tool in the treatment of sepsis. Thus, the purpose of this article was to systematically review the evidence on the impact of curcumin's anti-inflammatory effect on experimental sepsis. Methods: For this, the PubMed, MEDLINE, EMBASE, Scopus, Web of Science, and LILACS databases were used, and the research was not limited to a specific publication period. Only original articles in English using in vivo experimental models (rats or mice) of sepsis induction performed by administration of lipopolysaccharide (LPS) or cecal ligation and perforation surgery (CLP) were included in the study. Studies using curcumin in dry extract or with a high degree of purity were included. At initial screening, 546 articles were selected, and of these, 223 were eligible for primary evaluation. Finally, 12 articles with full text met all inclusion criteria. Our results showed that curcumin may inhibit sepsis-induced complications such as brain, heart, liver, lungs, and kidney damage. Curcumin can inhibit inflammatory factors, prevent oxidative stress, and regulate immune responses in sepsis. Additionally, curcumin increased significantly the survival rates after experimental sepsis in several studies. The modulation of the immune response and mortality by curcumin reinforces its protective effect on sepsis and indicates a potential therapeutic tool for the treatment of sepsis.
Asunto(s)
Curcumina , Sepsis , Ratas , Ratones , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Estrés Oxidativo , Sepsis/tratamiento farmacológicoRESUMEN
Prediction of pulmonary metabolites following inhalation of a locally acting pulmonary drug is essential to the successful development of novel inhaled medicines. The lungs present metabolic enzymes, therefore they influence drug disposal and toxicity. The present review provides an overview of alternative methods to evaluate the pulmonary metabolism for the safety and efficacy of pulmonary delivery systems. In vitro approaches for investigating pulmonary drug metabolism were described, including subcellular fractions, cell culture models and lung slices as the main available in vitro methods. In addition, in silico studies are promising alternatives that use specific software to predict pulmonary drug metabolism, determine whether a molecule will react with a metabolic enzyme, the site of metabolism (SoM) and the result of this interaction. They can be used in an integrated approach to delineate the major cytochrome P450 (CYP) isoforms to rationalize the use of in vivo methods. A case study about a combination of experimental and computational approaches was done using fluticasone propionate as an example. The results of three tested software, RSWebPredictor, SMARTCyp and XenoSite, demonstrated greater probability of the fluticasone propionate being metabolized by CYPs 3A4 at the S1 atom of 5-S-fluoromethyl carbothioate group. As the in vitro studies were not able to directly detect pulmonary metabolites, those alternatives in silico methods may reduce animal testing efforts, following the principle of 3Rs (Replacement, Reduction and Refinement), and contribute to the evaluation of pharmacological efficacy and safety profiles of new drugs in development.
Asunto(s)
Sistema Enzimático del Citocromo P-450 , Pulmón , Animales , Preparaciones Farmacéuticas/metabolismo , Pulmón/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Administración por Inhalación , FluticasonaRESUMEN
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are the latest class of drugs approved to treat type 2 DM (T2DM). Although adverse effects are often caused by a metabolite rather than the drug itself, only the safety assessment of disproportionate drug metabolites is usually performed, which is of particular concern for drugs of chronic use, such as SGLT2i. Bearing this in mind, in silico tools are efficient strategies to reveal the risk assessment of metabolites, being endorsed by many regulatory agencies. Thereby, the goal of this study was to apply in silico methods to provide the metabolites toxicity assessment of the SGLT2i. Toxicological assessment from SGLT2i metabolites retrieved from the literature was estimated using the structure and/or statistical-based alert implemented in DataWarrior and ADMET predictorTM softwares. The drugs and their metabolites displayed no mutagenic, tumorigenic or cardiotoxic risks. Still, M1-2 and M3-1 were recognized as potential hepatotoxic compounds and M1-2, M1-3, M3-1, M3-2, M3-3 and M4-3, were estimated to have very toxic LD50 values in rats. All SGLT2i and the metabolites M3-4, M4-1 and M4-2, were predicted to have reproductive toxicity. These results support the awareness that metabolites may be potential mediators of drug-induced toxicities of the therapeutic agents.
Asunto(s)
Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Ratas , Medición de Riesgo , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/toxicidadRESUMEN
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Despite causing great social and economic impact, there is currently no cure for AD. The most effective therapy to manage AD symptoms is based on acetylcholinesterase inhibitors (AChEi), from which rivastigmine presented numerous benefits. However, mutations in AChE, which affect approximately 5% of the population, can modify protein structure and function, changing the individual response to Alzheimer's treatment. In this study, we performed computer simulations of AChE wild type and variants R34Q, P135A, V333E, and H353N, identified by one or more genome-wide association studies, to evaluate their effects on protein structure and interaction with rivastigmine. The functional effects of AChE variants were predicted using eight machine learning algorithms, while the evolutionary conservation of AChE residues was analyzed using the ConSurf server. Autodock4.2.6 was used to predict the binding modes for the hAChE-rivastigmine complex, which is still unknown. Molecular dynamics (MD) simulations were performed in triplicates for the AChE wild type and mutants using the GROMACS packages. Among the analyzed variants, P135A was classified as deleterious by all the functional prediction algorithms, in addition to occurring at highly conserved positions, which may have harmful consequences on protein function. The molecular docking results suggested that rivastigmine interacts with hAChE at the upper active-site gorge, which was further confirmed by MD simulations. Our MD findings also suggested that the complex hAChE-rivastigmine remains stable over time. The essential dynamics revealed flexibility alterations at the active-site gorge upon mutations P135A, V333E, and H353N, which may lead to strong and nonintuitive consequences to hAChE binding. Nonetheless, similar binding affinities were registered in the MMPBSA analysis for the hAChE wild type and variants when complexed to rivastigmine. Finally, our findings indicated that the rivastigmine binding to hAChE is an energetically favorable process mainly driven by negatively charged amino acids.
Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Acetilcolinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Rivastigmina/uso terapéuticoRESUMEN
BACKGROUND: Microbial resistance has become a worldwide public health problem and may lead to morbidity and mortality in affected patients. OBJECTIVES: Therefore, this work aimed to evaluate the antibacterial activity of quinone-4- oxoquinoline derivatives. METHODS: These derivatives were evaluated against Gram-positive and Gram-negative bacteria by their antibacterial activity, anti-biofilm, and hemolytic activities and in silico assays. RESULTS: The quinone-4-oxoquinoline derivatives presented broad-spectrum antibacterial activities and, in some cases, were more active than commercially available reference drugs. These compounds also inhibited bacterial adhesion, and the assays revealed seven non-hemolytic derivatives. The derivatives seem to cause damage to the bacterial cell membrane, and those containing the carboxyl group at the C-3 position of the 4-quinolonic nucleus were more active than those containing a carboxyethyl group. CONCLUSION: The isoquinoline-5,8-dione nucleus also favored antimicrobial activity. The study showed that the target of the derivatives must be a non-conventional hydrophobic allosteric binding pocket on the DNA gyrase enzyme.
Asunto(s)
Bacterias Gramnegativas , Quinolonas , 4-Quinolonas , Antibacterianos/química , Antibacterianos/farmacología , Bacterias Grampositivas , Humanos , Pruebas de Sensibilidad Microbiana , Quinolonas/farmacología , Quinonas/farmacología , Relación Estructura-ActividadRESUMEN
With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2',6'-dihydroxy-4'-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2',4',6'- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones.
Asunto(s)
Antiprotozoarios/uso terapéutico , Chalcona/metabolismo , Chalcona/farmacología , Citosol/efectos de los fármacos , Leishmania/efectos de los fármacos , Peroxidasas/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Animales , Antiprotozoarios/administración & dosificación , Antiprotozoarios/farmacología , Células Cultivadas , Chalcona/administración & dosificación , Chalcona/análogos & derivados , Citosol/enzimología , Citosol/parasitología , Descubrimiento de Drogas , Humanos , Leishmania/clasificación , Leishmaniasis/tratamiento farmacológico , Leishmaniasis/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Peroxidasas/metabolismo , Proteínas Protozoarias/metabolismoRESUMEN
Ocular toxoplasmosis is the leading cause of posterior uveitis worldwide. We conducted an observational study of 262 consecutive individuals (n = 344 eyes) with ocular toxoplasmosis who were followed over a 34-month period. Most subjects were T. gondii IgG + /IgM- (n = 242; 92.4%; 317 eyes), and 140 eyes (40.7%) had active lesions. For eyes in which retinal lesions were active at recruitment and best-corrected visual acuity (BCVA) could be measured (n = 133), 21.0% (n = 28) remained blind (BCVA below 20/400) after inflammation resolved. In these eyes, atypical ocular toxoplasmosis (OR 4.99; 95% CI 1.14-22.85; p = 0.0330), macular lesion (OR 9.95; 95% CI 2.45-47.15; p = 0.0019) and any complication (OR 10.26; 95% CI 3.82-30.67; p < 0.0001) were associated with BCVA below 20/200. For eyes with only inactive lesions at recruitment and BCVA measured (n = 178), 28.1% (n = 50) were blind. In these eyes, having at least one lesion larger than one disc-diameter (OR 6.30; 95% CI 2.28-22.46; p = 0.0013) and macular lesion (OR 5.69; 95% CI 2.53-13.54; p < 0.0001) were associated with BCVA below 20/200. Older age (OR 1.02; 95% CI 1.00-1.05; p = 0.0493) and active disease at presentation (OR 4.74; 95% CI 1.95-12.91; p = 0.0011) were associated with recurrences. Additional clinical attention should be directed towards patients with risk factors for poor visual outcome.
Asunto(s)
Ceguera/patología , Toxoplasma/patogenicidad , Toxoplasmosis/patología , Uveítis Posterior/patología , Adolescente , Adulto , Factores de Edad , Anciano , Anticuerpos Antiprotozoarios/sangre , Antiprotozoarios/uso terapéutico , Ceguera/tratamiento farmacológico , Ceguera/inmunología , Ceguera/parasitología , Brasil , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Persona de Mediana Edad , Pirimetamina/uso terapéutico , Recurrencia , Retina/efectos de los fármacos , Retina/inmunología , Retina/parasitología , Retina/patología , Factores de Riesgo , Sulfadiazina/uso terapéutico , Toxoplasma/efectos de los fármacos , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Resultado del Tratamiento , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Uveítis Posterior/tratamiento farmacológico , Uveítis Posterior/inmunología , Uveítis Posterior/parasitología , Visión Ocular/efectos de los fármacos , Agudeza Visual/efectos de los fármacosRESUMEN
Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disorder, with a significant social and economic burden. ALS remains incurable, and the only drugs approved for its treatments confers a survival benefit of a few months for the patients. Missense mutations in superoxide dismutase 1 (SOD1), a major cytoplasmic antioxidant enzyme, has been associated with ALS development, accounting for 23% of its familial cases and 7% of all sporadic cases. This work aims to characterize in silico the structural and functional effects of SOD1 protein variants. Missense mutations in SOD1 were compiled from the literature and databases. Twelve algorithms were used to predict the functional and stability effects of these mutations. ConSurf was used to estimate the evolutionary conservation of SOD1 amino-acids. GROMACS was used to perform molecular dynamics (MD) simulations of SOD1 wild-type and variants A4V, D90A, H46R, and I113T, which account for approximately half of all ALS-SOD1 cases in the United States, Europe, Japan, and United Kingdom, respectively. 233 missense mutations in SOD1 protein were compiled from the databases and literature consulted. The predictive analyses pointed to an elevated rate of deleterious and destabilizing predictions for the analyzed variants, indicating their harmful effects. The ConSurf analysis suggested that mutations in SOD1 mainly affect conserved and possibly functionally essential amino acids. The MD analyses pointed to flexibility and essential dynamics alterations at the electrostatic and metal-binding loops of variants A4V, D90A, H46R, and I113T that could lead to aberrant interactions triggering toxic protein aggregation. These alterations may have harmful implications for SOD1 and explain their association with ALS. Understanding the effects of SOD1 mutations on protein structure and function facilitates the design of further experiments and provides relevant information on the molecular mechanism of pathology, which may contribute to improvements in existing treatments for ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Superóxido Dismutasa-1 , Bases de Datos de Proteínas , Humanos , Mutación Missense , Conformación Proteica , Relación Estructura-Actividad , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genéticaRESUMEN
Although ocular toxoplasmosis is a leading cause of posterior uveitis worldwide, there is scarce information about the real-life frequency of ocular lesions, visual outcomes, and risk factors for poor prognosis. We conducted a community-based cross-sectional study with 721 adults living in Cássia dos Coqueiros, Southeast Brazil, consisted of visual acuity measurement, dilated ocular examination, a risk-factor questionnaire, and peripheral blood collection for anti-T. gondii serology. Presumed toxoplasmic lesions were recorded on video and analyzed by experienced and masked ophthalmologists. Ocular toxoplasmosis was determined if at least one suspected lesion was appointed by two graders in the presence of positive anti-T. gondii serology. Forty-eight eyes (n = 42 participants; 6.7% among those with positive anti-T. gondii serology) with ocular toxoplasmosis were found. Most lesions were single (n = 28; 58.3%), peripheral (n = 34; 77.1%) and unilateral (85.7% of participants); no active lesions were found. Older age was associated with lesions larger than one-disc diameter (p = 0.047), and lower social stratum (OR: 2.89; CI 1.2-6.97; p = 0.018) was associated with the presence of toxoplasmic lesions. Although there were no differences in visual acuity between participants and eyes with or without ocular lesions (p > 0.05), unilateral blindness associated with ocular toxoplasmosis was identified in a reduced number of individuals.
Asunto(s)
Oftalmopatías , Encuestas y Cuestionarios , Toxoplasma , Toxoplasmosis , Adolescente , Adulto , Factores de Edad , Anciano , Brasil/epidemiología , Estudios Transversales , Oftalmopatías/epidemiología , Oftalmopatías/parasitología , Oftalmopatías/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Toxoplasmosis/epidemiología , Toxoplasmosis/fisiopatologíaRESUMEN
RESUMO Rochas contendo sulfetos metálicos podem ser oxidadas em um processo catalisado por procariotos quimiolitoautotróficos ou Fe3+. A atividade mineradora acelera esse processo ao gerar resíduos contendo sulfetos metálicos com grande superfície de contato. O lixiviado resultante, conhecido como drenagem de mina (DM), é rico em sulfato, íons hidrogênio e contaminantes químicos inorgânicos como ferro (Fe), zinco (Zn), cádmio (Cd), manganês (Mn), níquel (Ni), arsênio (As) e alumínio (Al). Para remover tais poluentes, atualmente, o principal tratamento utilizado é a adição de reagentes alcalinos. Entretanto, esse método tem limitada eficiência, alto custo e gera grandes volumes de resíduos sólidos tóxicos de relativa solubilidade. Bactérias redutoras de sulfato (BRS) podem oxidar matéria orgânica com geração de sulfeto. Algumas vias metabólicas do processo consomem H+neutralizando o pH. O sulfeto produzido pode reagir com contaminantes inorgânicos e precipitá-los, permitindo sua recuperação da fase líquida. O uso de subprodutos industriais e urbanos contendo diferentes fontes de carbono como doadores de elétrons no tratamento de DM tem sido investigado. Este artigo sumariza dados sobre as variáveis relevantes para a atividade microbiana durante o tratamento biológico de DM, analisando o atual cenário de pesquisas com fontes alternativas de carbono. Discute-se ainda novas fontes de matéria orgânica ainda não aplicadas para tratamento biológico de efluentes e que, sob aspectos de sustentabilidade, dos pontos de vista sustentável e econômico, podem ser usadas no tratamento de resíduos.
ABSTRACT Rocks containing metal sulfides be can oxidized biologically or chemically. Chemolithoautotrophics prokaryotes and Fe3+ catalyze this process. The mining activities also accelerate the process for creates metal sulphides tailings with a big contact surface. The leached formed is called Mine Drainage (MD) whose composition is rich in sulphate, hydrogen ions and inorganic chemical contaminants such as Fe, Zn, Mn, Cd, Ni, As e Al. Currently, in order to remove these pollutants, the main treatment used is the addition of alkaline reagents. However, the method has limited efficiency, high cost with input reagents and generates wide amounts of toxic solid residues with high solubility. The sulphide reducing bacterias (RSB) can oxidize organic matter generating sulphide. Some metabolic pathways consume H+ neutralizing the pH. The sulphide formed can react and precipitate inorganic pollutants, allowing their recuperation from the liquid phase. The use of industrial and urban by-products containing different carbon sources have been investigated as an electron donor in the MD treatment. The diverse microbial consortia synergic acting can present bigger efficiency in the presence of mixed carbon sources, besides lower cost in relation to the pure matter. Here will be detailed the biological treatment about which and how the variables of the system can influence the microbial activity and relevant molecules to the treatment. After is described the current situation of the research about alternative carbon sources. New carbon sources whose are a by-product of the expanding industry presenting good feature to anaerobic degrading are suggested. The by-product potential is described from the point of view of sustainability, and waste management.
RESUMEN
Sildenafil is a potent selective inhibitor of phosphosdiesterase-5 previously used in erectile dysfunction and subsequently approved in 2005 for pulmonary arterial hypertension treatment. Since oral administration of sildenafil shows pharmacokinetic problems with mean absolute bioavailability of 41%, the goal of this work was to develop a novel sildenafil self-emulsifying drug delivery system (SEDDS) for oral absorption improvement and management of dosage. One pharmaceutical solution and four SEDDS containing sildenafil were successfully obtained and SEDDS formed O/W nanoemulsion with droplet size less than 300 nm. The stability studies evidenced that the SEDDS containing 3.3% w/w of sildenafil yielded the best results. The safety of 2-pyrrolidone/isobutanol in oral formulations was assessed in mice and no lethality was achieved in the placebo groups with LD50 of 490 mg/Kg for SEDDS II-3.3, suggesting it as a safe excipient for humans. Therewithal, in silico studies using PBPK models provided the pharmacokinetic profile of sildenafil SEDDS. Subsequently, in silico evaluation indicated that the sildenafil SEDDS droplet size influenced its bioavailability, enhancing absorption, assuring a good pharmacokinetic profile. These findings suggest that the formulations developed here presented the potential to enhance drug oral absorption with the possibility to control drug dosage as they are liquid pharmaceutical formulations.
Asunto(s)
Hipertensión Arterial Pulmonar , Animales , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Emulsiones , Humanos , Ratones , Citrato de SildenafilRESUMEN
CD8 T cells play a crucial role in immune responses to virus infections and tumors. Naïve CD8 T lymphocytes after TCR stimulation undergo differentiation into CTLs and memory cells, which are essential sources of IFN-γ. We investigated IFN-γ production by CD8 T cell subsets found in nonimmune mice. A minor fraction of in vitro TCR-stimulated CD8 T cells produce IFN-γ, and it is regulated at the transcriptional level. Antigen inexperienced C57BL/6 mice present the coexistence of 2 populations. The main population exhibits a CD44low CD122low profile, which is compatible with naïve lymphocytes. The minor expresses a phenotype of immunologic memory, CD44hi CD122hi . Both subsets are able to produce IL-2 in response to TCR activation, but only the memory-like population is responsible for IFN-γ production. Similar to memory CD8 T cells, CD44hi CD8+ T cells also present a higher level of the transcriptional factor Eomes and a lower level of T-bet (Tbx21) mRNA than CD44low CD8+ T cells. The presence of the CD44hi CD8+ T cell population in nonimmune OT-I transgenic mice reveals that the population is generated independently of antigenic stimulation. CpG methylation is an efficient epigenetic mechanism for gene silencing. DNA methylation at posttranscriptional CpG sites in the Ifng promoter is higher in CD44low CD8+ T cells than in CD44hi CD8+ T cells. Thus, memory-like CD8 T cells have a distinct epigenetic pattern in the Ifng promoter and can rapidly produce IFN-γ in response to TCR stimulation.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Interferón gamma/inmunología , Animales , Linfocitos T CD8-positivos/citología , Islas de CpG/inmunología , Receptores de Hialuranos/genética , Receptores de Hialuranos/inmunología , Interferón gamma/genética , Subunidad beta del Receptor de Interleucina-2/genética , Subunidad beta del Receptor de Interleucina-2/inmunología , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/inmunología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/inmunologíaRESUMEN
Effects of imidacloprid and iprodione, isolated and in mixture, were assessed by using seed germination and root growth test, flow cytometry, and chromosomal aberrations test on Allium cepa root meristem. The highest concentrations of imidacloprid, including field concentration, increased the frequency of sub-G1 particles, decreased the frequency of nuclei in G2/M, increased the coefficient of variation of G1 (CVG1) and the frequency of aberrant cells, and inhibited the mitotic index culminating in the reduction in root length. All doses of iprodione also presented cytogenotoxic action. The highest concentration of the fungicide affected the growth of A. cepa roots. In response to exposure to pesticide mixtures, the cell cycle of A. cepa was blocked in the G1 phase. The mixtures with low doses of the pesticides significantly decreased the mitotic index, and as a consequence, the genotoxicity was reduced. In the mixtures with the highest doses of the agrochemicals, the blockage of the cell cycle was insufficient for damage repair, resulting in a significant increase of chromosomal aberrations. The results suggest caution in the use of pesticides doses that induce cytological abnormalities in non-target organisms.
Asunto(s)
Cebollas , Plaguicidas , Aminoimidazol Carboxamida/análogos & derivados , Aberraciones Cromosómicas , Daño del ADN , Humanos , Hidantoínas , Meristema , Índice Mitótico , Neonicotinoides , Nitrocompuestos , Raíces de PlantasRESUMEN
Injectable solutions containing epinephrine (EPI) and norepinephrine (NE) are not stable, and their degradation is favored mainly by the oxidation of catechol moiety. As studies of these drugs under forced degradation conditions are scarce, herein, we report the identification of their degradation products (DP) in anesthetic formulations by the development of stability-indicating HPLC method. Finally, the risk assessment of the major degradation products was evaluated using in silico toxicity approach. HPLC method was developed to obtain a higher selectivity allowing adequate elution for both drugs and their DPs. The optimized conditions were developed using a C18 HPLC column, sodium 1-octanesulfonate, and methanol (80:20, v/v) as mobile phase, with a flow rate of 1.5 mL/min, UV detection at 199 nm. The analysis of standard solutions with these modifications resulted in greater retention time for EPI and NE, which allow the separation of these drugs from their respective DPs. Then, five DPs were identified and analyzed by in silico studies. Most of the DPs showed important alerts as hepatotoxicity and mutagenicity. To the best of our acknowledgment, this is the first report of a stability-indicating HPLC method that can be used with formulations containing catecholamines.
Asunto(s)
Anestésicos , Cromatografía Líquida de Alta Presión/métodos , Epinefrina , Norepinefrina , Anestesia Dental , Anestésicos/análisis , Anestésicos/química , Anestésicos/toxicidad , Animales , Simulación por Computador , Estabilidad de Medicamentos , Epinefrina/análisis , Epinefrina/química , Epinefrina/toxicidad , Límite de Detección , Modelos Lineales , Ratones , Norepinefrina/análisis , Norepinefrina/química , Norepinefrina/toxicidad , Ratas , Reproducibilidad de los ResultadosRESUMEN
Infectious diseases are serious public health problems, affecting a large portion of the world's population. A molecule that plays a key role in pathogenic organisms is trehalose and recently has been an interest in the metabolism of this molecule for drug development. The trehalose-6-phosphate synthase (TPS1) is an enzyme responsible for the biosynthesis of trehalose-6-phosphate (T6P) in the TPS1/TPS2 pathway, which results in the formation of trehalose. Studies carried out by our group demonstrated the inhibitory capacity of T6P in the TPS1 enzyme from Saccharomyces cerevisiae, preventing the synthesis of trehalose. By in silico techniques, we compiled sequences and experimentally determined structures of TPS1. Sequence alignments and molecular modeling were performed. The generated structures were submitted in validation of algorithms, aligned structurally and analyzed evolutionarily. Molecular docking methodology was applied to analyze the interaction between T6P and TPS1 and ADMET properties of T6P were analyzed. The results demonstrated the models created presented sequence and structural similarities with experimentally determined structures. With the molecular docking, a cavity in the protein surface was identified and the molecule T6P was interacting with the residues TYR-40, ALA-41, MET-42, and PHE-372, indicating the possible uncompetitive inhibition mechanism provided by this ligand, which can be useful in directing the molecular design of inhibitors. In ADMET analyses, T6P had acceptable risk values compared with other compounds from World Drug Index. Therefore, these results may present a promising strategy to explore to develop a broad-spectrum antibiotic of this specific target with selectivity, potency, and reduced side effects, leading to a new way to treat infectious diseases like tuberculosis and candidiasis.