Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Fungi (Basel) ; 9(7)2023 Jul 21.
Article En | MEDLINE | ID: mdl-37504759

Fungal pathogens are significant plant-destroying microorganisms that present an increasing threat to the world's crop production. Chitin is a crucial component of fungal cell walls and a conserved MAMP (microbe-associated molecular pattern) that can be recognized by specific plant receptors, activating chitin-triggered immunity. The molecular mechanisms underlying the perception of chitin by specific receptors are well known in plants such as rice and Arabidopsis thaliana and are believed to function similarly in many other plants. To become a plant pathogen, fungi have to suppress the activation of chitin-triggered immunity. Therefore, fungal pathogens have evolved various strategies, such as prevention of chitin digestion or interference with plant chitin receptors or chitin signaling, which involve the secretion of fungal proteins in most cases. Since chitin immunity is a very effective defensive response, these fungal mechanisms are believed to work in close coordination. In this review, we first provide an overview of the current understanding of chitin-triggered immune signaling and the fungal proteins developed for its suppression. Second, as an example, we discuss the mechanisms operating in fungal biotrophs such as powdery mildew fungi, particularly in the model species Podosphaera xanthii, the main causal agent of powdery mildew in cucurbits. The key role of fungal effector proteins involved in the modification, degradation, or sequestration of immunogenic chitin oligomers is discussed in the context of fungal pathogenesis and the promotion of powdery mildew disease. Finally, the use of this fundamental knowledge for the development of intervention strategies against powdery mildew fungi is also discussed.

2.
Int J Mol Sci ; 24(10)2023 May 22.
Article En | MEDLINE | ID: mdl-37240427

Powdery mildew and rust fungi are major agricultural problems affecting many economically important crops and causing significant yield losses. These fungi are obligate biotrophic parasites that are completely dependent on their hosts for growth and reproduction. Biotrophy in these fungi is determined by the presence of haustoria, specialized fungal cells that are responsible for nutrient uptake and molecular dialogue with the host, a fact that undoubtedly complicates their study under laboratory conditions, especially in terms of genetic manipulation. RNA interference (RNAi) is the biological process of suppressing the expression of a target gene through double-stranded RNA that induces mRNA degradation. RNAi technology has revolutionized the study of these obligate biotrophic fungi by enabling the analysis of gene function in these fungal. More importantly, RNAi technology has opened new perspectives for the management of powdery mildew and rust diseases, first through the stable expression of RNAi constructs in transgenic plants and, more recently, through the non-transgenic approach called spray-induced gene silencing (SIGS). In this review, the impact of RNAi technology on the research and management of powdery mildew and rust fungi will be addressed.


Basidiomycota , Plant Diseases , RNA Interference , Plant Diseases/genetics , Plant Diseases/microbiology , Basidiomycota/genetics , Gene Silencing , RNA, Double-Stranded/genetics , Erysiphe
3.
Plant Dis ; 107(11): 3414-3421, 2023 Nov.
Article En | MEDLINE | ID: mdl-37079017

Gray mold in strawberry is caused by multiple species of Botrytis, including Botrytis cinerea, B. pseudocinerea, B. fragariae, and B. mali. The species B. cinerea and B. fragariae are widespread in production regions of the eastern United States and Germany, and their distinction is important for disease management strategies. Currently, the only way to differentiate these species in field samples is by PCR, which is time consuming, labor intensive, and costly. In this study, a loop-mediated isothermal amplification (LAMP) technique was developed based on species-specific NEP2 gene nucleotide sequences. The designed primer set specifically amplified B. fragariae DNA and no other Botrytis spp. (B. cinerea, B. mali, and B. pseudocinerea) or plant pathogens. The LAMP assay was able to amplify fragments from DNA extracted from infected fruit using a rapid DNA extraction protocol, confirming its ability to detect low amounts of B. fragaria DNA from field-infected fruit. In addition, a blind test was performed to identify B. fragariae in 51 samples collected from strawberry fields in the eastern United States using the LAMP technique. The B. fragariae samples were identified with a reliability of 93.5% (29 of 32), and none of the B. cinerea, B. pseudocinerea, or B. mali samples included in the test were amplified in 10 min. Our results show that the LAMP technique is a specific and reliable method for the detection of B. fragariae from infected fruit tissue and can help to control this important disease in the field.


Fragaria , Fungicides, Industrial , United States , Botrytis/genetics , Fragaria/genetics , Reproducibility of Results , DNA, Fungal/genetics
4.
J Fungi (Basel) ; 8(10)2022 Sep 28.
Article En | MEDLINE | ID: mdl-36294587

Phytopathogenic fungi have evolved mechanisms to manipulate plant defences, such as chitin-triggered immunity, a plant defensive response based on the recognition of chitin oligomers by plant-specific receptors. To cope with chitin resistance, fungal pathogens have developed different strategies to prevent chitin recognition, such as binding, breaking, or modifying immunogenic oligomers. In powdery mildew fungi, the activity of chitin deacetylase (CDA) is crucial for this purpose, since silencing of the CDA gene leads to a rapid activation of chitin signalling and the subsequent suppression of fungal growth. In this work, we have identified an unusually short CDA transcript in Podosphaera xanthii, the cucurbit powdery mildew pathogen. This transcript, designated PxCDA3, appears to encode a truncated version of CDA resulting from an alternative splicing of the PxCDA gene, which lacked most of the chitin deacetylase activity domain but retained the carbohydrate-binding module. Experiments with the recombinant protein showed its ability to bind to chitin oligomers and prevent the activation of chitin signalling. Furthermore, the use of fluorescent fusion proteins allowed its localization in plant papillae at pathogen penetration sites. Our results suggest the occurrence of a new fungal chitin-binding effector, designated CHBE, involved in the manipulation of chitin-triggered immunity in powdery mildew fungi.

5.
J Fungi (Basel) ; 7(9)2021 Sep 08.
Article En | MEDLINE | ID: mdl-34575771

Powdery mildew is caused by Podosphaera xanthii, and is one of the most important diseases that attacks Spanish cucurbit crops. Fungicide application is the primary control tool; however, its effectiveness is hampered by the rapid development of resistance to these compounds. In this study, the EC50 values of 26 isolates were determined in response to the succinate dehydrogenase inhibitor (SDHI) fungicides boscalid and fluopyram. From these data, the discriminatory doses were deduced and used for SDHI resistance monitoring during the 2018 and 2019 growing seasons. Of the 298 isolates analysed, 37.9% showed resistance to boscalid and 44% to fluopyram. Although different phenotypes were observed in leaf disc assays, the resistant isolates showed the same phenotype in plant assays. Compared to sensitive isolates, two amino acid changes were found in the SdhC subunit, A86V and G151R, which are associated mostly with resistance patterns to fluopyram and boscalid, respectively. Furthermore, no significant differences were observed in terms of fitness cost between the selected sensitive and resistant isolates analysed here. Lastly, a loop-mediated isothermal amplification (LAMP) assay was developed to detect A86V and G151R mutations using conidia obtained directly from infected material. Our results show that growers could continue to use boscalid and fluopyram, but resistance management practices must be implemented.

6.
J Fungi (Basel) ; 7(9)2021 Sep 08.
Article En | MEDLINE | ID: mdl-34575773

The powdery mildew fungus Podosphaera xanthii is one of the most important limiting factors for cucurbit production worldwide. Despite the significant efforts made by breeding and chemical companies, effective control of this pathogen remains elusive to growers. In this work, we examined the suitability of RNAi technology called spray-induced gene silencing (SIGS) for controlling cucurbit powdery mildew. Using leaf disc and cotyledon infiltration assays, we tested the efficacy of dsRNA applications to induce gene silencing in P. xanthii. Furthermore, to identify new target candidate genes, we analyzed sixty conserved and non-annotated proteins (CNAPs) deduced from the P. xanthii transcriptome in silico. Six proteins presumably involved in essential functions, specifically respiration (CNAP8878, CNAP9066, CNAP10905 and CNAP30520), glycosylation (CNAP1048) and efflux transport (CNAP948), were identified. Functional analysis of these CNAP coding genes by dsRNA-induced gene silencing resulted in strong silencing phenotypes with large reductions in fungal growth and disease symptoms. Due to their important contributions to fungal development, the CNAP1048, CNAP10905 and CNAP30520 genes were selected as targets to conduct SIGS assays under plant growth chamber conditions. The spray application of these dsRNAs induced high levels of disease control, supporting that SIGS could be a sustainable approach to combat powdery mildew diseases.

7.
Microorganisms ; 8(9)2020 Sep 17.
Article En | MEDLINE | ID: mdl-32957583

Powdery mildew fungi (Erysiphales) are among the most common and important plant fungal pathogens. These fungi are obligate biotrophic parasites that attack nearly 10,000 species of angiosperms, including major crops, such as cereals and grapes. Although cultural and biological practices may reduce the risk of infection by powdery mildew, they do not provide sufficient protection. Therefore, in practice, chemical control, including the use of fungicides from multiple chemical groups, is the most effective tool for managing powdery mildew. Unfortunately, the risk of resistance development is high because typical spray programs include multiple applications per season. In addition, some of the most economically destructive species of powdery mildew fungi are considered to be high-risk pathogens and are able to develop resistance to several chemical classes within a few years. This situation has decreased the efficacy of the major fungicide classes, such as sterol demethylation inhibitors, quinone outside inhibitors and succinate dehydrogenase inhibitors, that are employed against powdery mildews. In this review, we present cases of reduction in sensitivity, development of resistance and failure of control by fungicides that have been or are being used to manage powdery mildew. In addition, the molecular mechanisms underlying resistance to fungicides are also outlined. Finally, a number of recommendations are provided to decrease the probability of resistance development when fungicides are employed.

8.
Plant Dis ; 103(7): 1515-1524, 2019 Jul.
Article En | MEDLINE | ID: mdl-31059385

Powdery mildew, caused by the fungus Podosphaera xanthii, is one of the most economically important diseases affecting cucurbit crops in Spain. Currently, chemical control offers the most efficient management of the disease; however, P. xanthii isolates resistant to multiple classes of site-specific fungicides have been reported in the Spanish cucurbit powdery mildew population. In previous studies, resistance to the fungicides known as methyl benzimidazole carbamates (MBCs) was found to be caused by the amino acid substitution E198A on ß-tubulin. To detect MBC-resistant isolates in a faster, more efficient, and more specific way than the traditional methods used to date, a loop-mediated isothermal amplification (LAMP) system was developed. In this study, three sets of LAMP primers were designed. One set was designed for the detection of the wild-type allele and two sets were designed for the E198A amino acid change. Positive results were only obtained with both mutant sets; however, LAMP reaction conditions were only optimized with primer set 2, which was selected for optimal detection of the E198A amino acid change in P. xanthii-resistant isolates, along with the optimal temperature and duration parameters of 65°C for 75 min, respectively. The hydroxynaphthol blue (HNB) metal indicator was used for quick visualization of results through the color change from violet to sky blue when the amplification was positive. HNB was added before the amplification to avoid opening the lids, thus decreasing the probability of contamination. To confirm that the amplified product corresponded to the ß-tubulin gene, the LAMP product was digested with the enzyme LweI and sequenced. Our results show that the LAMP technique is a specific and reproducible method that could be used for monitoring MBC resistance of P. xanthii directly in the field.


Ascomycota , Drug Resistance, Fungal , Plant Diseases , Ascomycota/drug effects , Ascomycota/genetics , Ascomycota/physiology , Benzimidazoles/pharmacology , Carbamates/pharmacology , Nucleic Acid Amplification Techniques , Spain
9.
Plant Dis ; 102(8): 1599-1605, 2018 Aug.
Article En | MEDLINE | ID: mdl-30673427

In Spain, management of the cucurbit powdery mildew pathogen Podosphaera xanthii is strongly dependent on chemicals such as quinone outside inhibitor (QoI) fungicides. In a previous report, widespread resistance to QoI fungicides in populations of P. xanthii in south-central Spain was documented, but the molecular mechanisms of resistance remained unclear. In this work, the role of the Rieske-FeS (risp) and the cytochrome b (cytb) gene mutations in QoI resistance of P. xanthii were examined. No point mutations in the risp gene were found in the three QoI-resistant isolates analyzed. For cytb, sequence analysis revealed the presence of a G143A substitution that occurs in many QoI-resistant fungi. This mutation was always detected in QoI-resistant isolates of P. xanthii; however, it was also detected in sensitive isolates. To better understand the role of heteroplasmy for cytb in QoI resistance of P. xanthii, an allele-specific quantitative PCR was developed to quantify the relative abundance of the G143 (sensitive) and A143 (resistant) alleles. High relative abundance of A143 allele (70%) was associated with isolates resistant to QoI fungicides; however, QoI-sensitive isolates also carried the mutated allele in frequencies ranged from 10 to 60%. Our data suggest that G143A mutation in cytb is the primary factor involved in QoI resistance of P. xanthii but the proportion of G143 and A143 alleles in an isolate may determine its QoI resistance level.


Ascomycota/genetics , Cytochromes b/genetics , Drug Resistance, Fungal/drug effects , Fungal Proteins/genetics , Strobilurins/pharmacology , Alleles , Ascomycota/physiology , Drug Resistance, Fungal/genetics , Fungicides, Industrial/pharmacology , Gene Frequency , Mutation , Plant Diseases/microbiology , Polymerase Chain Reaction/methods , Spain
...