Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Elife ; 122024 Mar 27.
Article En | MEDLINE | ID: mdl-38537148

Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named 'L' and 'R,' where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.


Adenosine Triphosphate , Catalytic Domain , Phosphorylation , Protein Conformation
2.
bioRxiv ; 2023 Nov 06.
Article En | MEDLINE | ID: mdl-37745518

Activation of the extracellular signal regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named "L" and "R", where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

3.
J Med Chem ; 65(4): 3123-3133, 2022 02 24.
Article En | MEDLINE | ID: mdl-34889605

KRASG12D, the most common oncogenic KRAS mutation, is a promising target for the treatment of solid tumors. However, when compared to KRASG12C, selective inhibition of KRASG12D presents a significant challenge due to the requirement of inhibitors to bind KRASG12D with high enough affinity to obviate the need for covalent interactions with the mutant KRAS protein. Here, we report the discovery and characterization of the first noncovalent, potent, and selective KRASG12D inhibitor, MRTX1133, which was discovered through an extensive structure-based activity improvement and shown to be efficacious in a KRASG12D mutant xenograft mouse tumor model.


Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Drug Discovery , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
4.
J Med Chem ; 63(13): 6679-6693, 2020 07 09.
Article En | MEDLINE | ID: mdl-32250617

Capping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target's resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRASG12C that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series. The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.


Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Xenograft Model Antitumor Assays
5.
Cancer Discov ; 10(1): 54-71, 2020 01.
Article En | MEDLINE | ID: mdl-31658955

Despite decades of research, efforts to directly target KRAS have been challenging. MRTX849 was identified as a potent, selective, and covalent KRASG12C inhibitor that exhibits favorable drug-like properties, selectively modifies mutant cysteine 12 in GDP-bound KRASG12C, and inhibits KRAS-dependent signaling. MRTX849 demonstrated pronounced tumor regression in 17 of 26 (65%) KRASG12C-positive cell line- and patient-derived xenograft models from multiple tumor types, and objective responses have been observed in patients with KRASG12C-positive lung and colon adenocarcinomas. Comprehensive pharmacodynamic and pharmacogenomic profiling in sensitive and partially resistant nonclinical models identified mechanisms implicated in limiting antitumor activity including KRAS nucleotide cycling and pathways that induce feedback reactivation and/or bypass KRAS dependence. These factors included activation of receptor tyrosine kinases (RTK), bypass of KRAS dependence, and genetic dysregulation of cell cycle. Combinations of MRTX849 with agents that target RTKs, mTOR, or cell cycle demonstrated enhanced response and marked tumor regression in several tumor models, including MRTX849-refractory models. SIGNIFICANCE: The discovery of MRTX849 provides a long-awaited opportunity to selectively target KRASG12C in patients. The in-depth characterization of MRTX849 activity, elucidation of response and resistance mechanisms, and identification of effective combinations provide new insight toward KRAS dependence and the rational development of this class of agents.See related commentary by Klempner and Hata, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Acetonitriles/therapeutic use , Adenocarcinoma of Lung/drug therapy , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Lung Neoplasms/drug therapy , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Pyrrolidines/therapeutic use , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Apoptosis , Cell Proliferation , Clinical Trials, Phase I as Topic , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Middle Aged , Prognosis , Pyrimidines , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Proc Natl Acad Sci U S A ; 116(31): 15463-15468, 2019 07 30.
Article En | MEDLINE | ID: mdl-31311868

Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.


Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/chemistry , Protein Kinase Inhibitors/pharmacology , Allosteric Regulation/drug effects , Binding Sites , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Deuterium Exchange Measurement , Humans , Mass Spectrometry , Models, Biological , Nucleotides/chemistry , Nucleotides/metabolism , Phosphorylation/drug effects , Protein Structure, Secondary
7.
ACS Med Chem Lett ; 9(12): 1230-1234, 2018 Dec 13.
Article En | MEDLINE | ID: mdl-30613331

KRAS is the most frequently mutated driver oncogene in human cancer, and KRAS mutations are commonly associated with poor prognosis and resistance to standard treatment. The ability to effectively target and block the function of mutated KRAS has remained elusive despite decades of research. Recent findings have demonstrated that directly targeting KRAS-G12C with electrophilic small molecules that covalently modify the mutated codon 12 cysteine is feasible. We have discovered a series of tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity. The PK/PD and efficacy of compound 13 will be highlighted.

8.
J Med Chem ; 57(23): 10112-29, 2014 Dec 11.
Article En | MEDLINE | ID: mdl-25411915

A series of 2,3,4,4a,10,10a-hexahydropyrano[3,2-b]chromene analogs was developed that demonstrated high selectivity (>2000-fold) for BACE1 vs Cathepsin D (CatD). Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Guided by structure based design, changes to P2' and P3 moieties were explored. A conformationally restricted P2' methyl group provided inhibitors with excellent cell potency (37-137 nM) and selectivity (435 to >2000-fold) for BACE1 vs CatD. These efforts lead to compound 59, which demonstrated a 69% reduction in rat CSF Aß1-40 at 60 mg/kg (PO).


Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Chromans/chemical synthesis , Protease Inhibitors/chemical synthesis , Spiro Compounds/chemical synthesis , Animals , Brain/metabolism , Cathepsin D , Chromans/pharmacokinetics , Chromans/pharmacology , HEK293 Cells , Humans , Inhibitory Concentration 50 , Male , Mice , Models, Molecular , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Rats , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 24(11): 2477-80, 2014 Jun 01.
Article En | MEDLINE | ID: mdl-24780121

The development of 1,3,4,4a,5,10a-hexahydropyrano[3,4-b]chromene analogs as BACE1 inhibitors is described. Introduction of the spirocyclic pyranochromene scaffold yielded several advantages over previous generation cores, including increased potency, reduced efflux, and reduced CYP2D6 inhibition. Compound 13 (BACE1 IC50=110 nM) demonstrated a reduction in CSF Aß in wild type rats after a single dose.


Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Benzopyrans/pharmacology , Oxazoles/pharmacology , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Aspartic Acid Endopeptidases/metabolism , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Dose-Response Relationship, Drug , Humans , Microsomes, Liver/enzymology , Molecular Conformation , Oxazoles/chemical synthesis , Oxazoles/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Rats , Structure-Activity Relationship , Swine
10.
Bioorg Med Chem Lett ; 24(8): 1923-7, 2014 Apr 15.
Article En | MEDLINE | ID: mdl-24675381

Herein we describe the design of a novel series of ATP competitive B-Raf inhibitors via structure-based methods. These 3-N-methylquinazoline-4(3H)-one based inhibitors exhibit both excellent cellular potency and striking B-Raf selectivity. Optimization led to the identification of compound 16, a potent, selective and orally available agent with excellent pharmacokinetic properties and robust tumor growth inhibition in xenograft studies. Our work also demonstrates that by replacing an aryl amide with an aryl sulfonamide, a multikinase inhibitor such as AZ-628, can be converted to a selective B-Raf inhibitor, a finding that should have broad application in kinase drug discovery.


Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Crystallography, X-Ray , Enzyme Activation/drug effects , Humans , Inhibitory Concentration 50 , Molecular Structure , Protein Kinase Inhibitors/chemistry , Quinazolines/chemistry , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
11.
J Med Chem ; 57(3): 878-902, 2014 Feb 13.
Article En | MEDLINE | ID: mdl-24397738

In an attempt to increase selectivity vs Cathepsin D (CatD) in our BACE1 program, a series of 1,3,4,4a,10,10a-hexahydropyrano[4,3-b]chromene analogues was developed. Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Using structure-based design, substitutions to improve binding to both the S3 and S2' sites of BACE1 were explored. An acyl guanidine moiety provided the most potent analogues. These compounds demonstrated 10-420 fold selectivity for BACE1 vs CatD, and were highly potent in a cell assay measuring Aß1-40 production (5-99 nM). They also suffered from high efflux. Despite this undesirable property, two of the acyl guanidines achieved free brain concentrations (Cfree,brain) in a guinea pig PD model sufficient to cover their cell IC50s. Moreover, a significant reduction of Aß1-40 in guinea pig, rat, and cyno CSF (58%, 53%, and 63%, respectively) was observed for compound 62.


Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/antagonists & inhibitors , Brain/metabolism , Chromans/chemical synthesis , Pyrans/chemical synthesis , Spiro Compounds/chemical synthesis , Animals , CHO Cells , Cell Line, Tumor , Chromans/pharmacokinetics , Chromans/pharmacology , Cricetinae , Cricetulus , Crystallography, X-Ray , Guinea Pigs , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Models, Molecular , Pyrans/pharmacokinetics , Pyrans/pharmacology , Rats , Rats, Sprague-Dawley , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship
12.
J Med Chem ; 57(5): 1753-69, 2014 Mar 13.
Article En | MEDLINE | ID: mdl-23672640

HCV serine protease NS3 represents an attractive drug target because it is not only essential for viral replication but also implicated in the viral evasion of the host immune response pathway through direct cleavage of key proteins in the human innate immune system. Through structure-based drug design and optimization, macrocyclic peptidomimetic molecules bearing both a lipophilic P2 isoindoline carbamate and a P1/P1' acylsulfonamide/acylsulfamide carboxylic acid bioisostere were prepared that possessed subnanomolar potency against the NS3 protease in a subgenomic replicon-based cellular assay (Huh-7). Danoprevir (compound 49) was selected as the clinical development candidate for its favorable potency profile across multiple HCV genotypes and key mutant strains and for its good in vitro ADME profiles and in vivo target tissue (liver) exposures across multiple animal species. X-ray crystallographic studies elucidated several key features in the binding of danoprevir to HCV NS3 protease and proved invaluable to our iterative structure-based design strategy.


Antiviral Agents/therapeutic use , Drug Discovery , Lactams/therapeutic use , Protease Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Crystallography, X-Ray , Cyclopropanes , Dogs , Isoindoles , Lactams/chemistry , Lactams/pharmacology , Lactams, Macrocyclic , Macaca fascicularis , Molecular Structure , Proline/analogs & derivatives , Protease Inhibitors/pharmacology , Rats , Sulfonamides/chemistry , Sulfonamides/pharmacology
13.
J Med Chem ; 56(8): 3379-403, 2013 Apr 25.
Article En | MEDLINE | ID: mdl-23537249

A hallmark of Alzheimer's disease is the brain deposition of amyloid beta (Aß), a peptide of 36-43 amino acids that is likely a primary driver of neurodegeneration. Aß is produced by the sequential cleavage of APP by BACE1 and γ-secretase; therefore, inhibition of BACE1 represents an attractive therapeutic target to slow or prevent Alzheimer's disease. Herein we describe BACE1 inhibitors with limited molecular flexibility and molecular weight that decrease CSF Aß in vivo, despite efflux. Starting with spirocycle 1a, we explore structure-activity relationships of core changes, P3 moieties, and Asp binding functional groups in order to optimize BACE1 affinity, cathepsin D selectivity, and blood-brain barrier (BBB) penetration. Using wild type guinea pig and rat, we demonstrate a PK/PD relationship between free drug concentrations in the brain and CSF Aß lowering. Optimization of brain exposure led to the discovery of (R)-50 which reduced CSF Aß in rodents and in monkey.


Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/cerebrospinal fluid , Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Spiro Compounds/chemical synthesis , Animals , Blood-Brain Barrier/metabolism , Chromans/chemical synthesis , Chromans/pharmacokinetics , Chromans/pharmacology , Guinea Pigs , HEK293 Cells , Humans , Hydantoins/chemical synthesis , Hydantoins/pharmacokinetics , Hydantoins/pharmacology , Male , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Rats , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship
14.
J Med Chem ; 55(18): 8110-27, 2012 Sep 27.
Article En | MEDLINE | ID: mdl-22934575

The discovery and optimization of a series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine compounds that are ATP-competitive, selective inhibitors of protein kinase B/Akt is reported. The initial design and optimization was guided by the use of X-ray structures of inhibitors in complex with Akt1 and the closely related protein kinase A. The resulting compounds demonstrate potent inhibition of all three Akt isoforms in biochemical assays and poor inhibition of other members of the cAMP-dependent protein kinase/protein kinase G/protein kinase C extended family and block the phosphorylation of multiple downstream targets of Akt in human cancer cell lines. Biological studies with one such compound, 28 (GDC-0068), demonstrate good oral exposure resulting in dose-dependent pharmacodynamic effects on downstream biomarkers and a robust antitumor response in xenograft models in which the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway is activated. 28 is currently being evaluated in human clinical trials for the treatment of cancer.


Adenosine Triphosphate/metabolism , Binding, Competitive , Drug Discovery , Piperazines/metabolism , Piperazines/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/metabolism , Pyrimidines/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Humans , Inhibitory Concentration 50 , Models, Molecular , Piperazines/chemistry , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/chemistry , Pyrimidines/chemistry , Substrate Specificity
15.
Sci Signal ; 5(223): ra37, 2012 May 08.
Article En | MEDLINE | ID: mdl-22569334

The protein serine-threonine kinase Akt undergoes a substantial conformational change upon activation, which is induced by the phosphorylation of two critical regulatory residues, threonine 308 and serine 473. Paradoxically, treating cells with adenosine 5'-triphosphate (ATP)-competitive inhibitors of Akt results in increased phosphorylation of both residues. We show that binding of ATP-competitive inhibitors stabilized a conformation in which both phosphorylated sites were inaccessible to phosphatases. ATP binding also produced this protection of the phosphorylated sites, whereas interaction with its hydrolysis product adenosine 5'-diphosphate (ADP) or allosteric Akt inhibitors resulted in increased accessibility of these phosphorylated residues. ATP-competitive inhibitors mimicked ATP by targeting active Akt. Forms of Akt activated by an oncogenic mutation or myristoylation were more potently inhibited by the ATP-competitive inhibitors than was wild-type Akt. These data support a new model of kinase regulation, wherein nucleotides modulate an on-off switch in Akt through conformational changes, which is disrupted by ATP-competitive inhibitors.


Adenosine Triphosphate/metabolism , Phosphoric Monoester Hydrolases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Adenosine Diphosphate/metabolism , Allosteric Regulation , Binding Sites , Models, Molecular , Phosphorylation
17.
Bioorg Med Chem Lett ; 21(8): 2410-4, 2011 Apr 15.
Article En | MEDLINE | ID: mdl-21392984

A novel series of spirochromane pan-Akt inhibitors is reported. SAR optimization furnished compounds with improved enzyme potencies and excellent selectivity over the related AGC kinase PKA. Attempted replacement of the phenol hinge binder provided compounds with excellent Akt enzyme and cell activities but greatly diminished selectivity over PKA.


Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 21(4): 1243-7, 2011 Feb 15.
Article En | MEDLINE | ID: mdl-21251822

The development of inhibitors of B-Raf(V600E) serine-threonine kinase is described. Various head-groups were examined to optimize inhibitor activity and ADME properties. Several of the head-groups explored, including naphthol, phenol and hydroxyamidine, possessed good activity but had poor pharmacokinetic exposure in mice. Exposure was improved by incorporating more metabolically stable groups such as indazole and tricyclic pyrazole, while indazole could also be optimized for good cellular activity.


Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Amino Acid Substitution , Animals , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Humans , Indazoles/chemistry , Mice , Microsomes, Liver/metabolism , Mutation , Oximes/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyrazoles/chemistry , Structure-Activity Relationship
...