Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Front Mol Neurosci ; 11: 406, 2018.
Article En | MEDLINE | ID: mdl-30455629

Aß metabolism plays a pivotal role in Alzheimer's disease. Here, we used a yeast model to monitor Aß42 toxicity when entering the secretory pathway and demonstrate that processing in, and exit from the endoplasmic reticulum (ER) is required to unleash the full Aß42 toxic potential. Consistent with previously reported data, our data suggests that Aß42 interacts with mitochondria, thereby enhancing formation of reactive oxygen species and eventually leading to cell demise. We used our model to search for genes that modulate this deleterious effect, either by reducing or enhancing Aß42 toxicity, based on screening of the yeast knockout collection. This revealed a reduced Aß42 toxicity not only in strains hampered in ER-Golgi traffic and mitochondrial functioning but also in strains lacking genes connected to the cell cycle and the DNA replication stress response. On the other hand, increased Aß42 toxicity was observed in strains affected in the actin cytoskeleton organization, endocytosis and the formation of multivesicular bodies, including key factors of the ESCRT machinery. Since the latter was shown to be required for the repair of membrane lesions in mammalian systems, we studied this aspect in more detail in our yeast model. Our data demonstrated that Aß42 heavily disturbed the plasma membrane integrity in a strain lacking the ESCRT-III accessory factor Bro1, a phenotype that came along with a severe growth defect and enhanced loading of lipid droplets. Thus, it appears that also in yeast ESCRT is required for membrane repair, thereby counteracting one of the deleterious effects induced by the expression of Aß42. Combined, our studies once more validated the use of yeast as a model to investigate fundamental mechanisms underlying the etiology of neurodegenerative disorders.

2.
PLoS One ; 12(6): e0179369, 2017.
Article En | MEDLINE | ID: mdl-28617828

BACKGROUND: The most common and severe disease causing allele of Alpha 1-Antitrypsin Deficiency (1ATD) is Z-1AT. This protein aggregates in the endoplasmic reticulum, which is the main cause of liver disease in childhood. Based on recent evidences and on the frequency of liver disease occurrence in Z-1AT patients, it seems that liver disease progression is linked to still unknown genetic factors. METHODS: We used an innovative approach combining yeast genetic screens with next generation exome sequencing to identify and functionally characterize the genes involved in 1ATD associated liver disease. RESULTS: Using yeast genetic screens, we identified HRD1, an Endoplasmic Reticulum Associated Degradation (ERAD) associated protein, as an inducer of Z-mediated toxicity. Whole exome sequencing of 1ATD patients resulted in the identification of two variants associated with liver damages in Z-1AT homozygous cases: HFE H63D and HERPUD1 R50H. Functional characterization in Z-1AT model cell lines demonstrated that impairment of the ERAD machinery combined with the HFE H63D variant expression decreased both cell proliferation and cell viability, while Unfolded Protein Response (UPR)-mediated cell death was hyperstimulated. CONCLUSION: This powerful experimental pipeline allowed us to identify and functionally validate two genes involved in Z-1AT-mediated severe liver toxicity. This pilot study moves forward our understanding on genetic modifiers involved in 1ATD and highlights the UPR pathway as a target for the treatment of liver diseases associated with 1ATD. Finally, these findings support a larger scale screening for HERPUD1 R50H and HFE H63D variants in the sub-group of 1ATD patients developing significant chronic hepatic injuries (hepatomegaly, chronic cholestasis, elevated liver enzymes) and at risk developing liver cirrhosis.


Endoplasmic Reticulum-Associated Degradation/genetics , Hemochromatosis Protein , Liver Cirrhosis , Liver/metabolism , Mutation, Missense , alpha 1-Antitrypsin Deficiency , Amino Acid Substitution , Cell Line , Female , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Humans , Liver/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/metabolism
3.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt A): 1168-1176, 2017 May.
Article En | MEDLINE | ID: mdl-28267577

BACKGROUND: Alzheimer's disease is the most common neurodegenerative disease associated with aggregation of Aß peptides. Aß toxicity is mostly related to the capacity of intermediate oligomers to disrupt membrane integrity. We previously expressed Aß1-42 in a eukaryotic cellular system and selected synthetic variants on their sole toxicity. The most toxic mutant G37C forms stable oligomers. METHODS: Different biophysical methods (Fluorescence spectroscopy, cross-linking, mass spectrometry (MS), Small Angle X-ray Scattering (SAXS), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), calcein leakage) were used. RESULTS: The oligomers are mostly populated by a 14mers resulting from the packing of homodimers. These homodimers come from the formation of a disulfide bridge between two monomers. This link stabilizes the multimers and prevents the assembly into amyloid fibrils. These oligomers affect the membrane integrity. The reduction of disulfide bonds leads to a rearrangement and redirects assembly of Aß amyloid fibrils. CONCLUSION: The toxic synthetic AßG37C mutant can assemble into an amyloid of unusual morphology through the formation of anti-parallel ß-sheets. This pathway involves the formation of oligomers resulting from the arrangement of Aß dimers linked by covalent di-sulfide link, being these oligomers harmful for the membranes. GENERAL SIGNIFICANCE: The capacity to produce large amount of stable oligomers without additional detergents or extrinsic cross-linkers allow further structural and biophysical studies to understand their capacity to assemble and disrupt the membranes, a key event in Alzheimer's disease.


Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Amyloid/chemistry , Amyloid/metabolism , Humans , Microscopy, Atomic Force/methods , Microscopy, Electron, Transmission/methods , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Folding , Scattering, Small Angle , Spectrometry, Fluorescence/methods , X-Ray Diffraction/methods
4.
Science ; 355(6325): 630-634, 2017 02 10.
Article En | MEDLINE | ID: mdl-28183979

The maintenance of duplicated genes is thought to protect cells from genetic perturbations, but the molecular basis of this robustness is largely unknown. By measuring the interaction of yeast proteins with their partners in wild-type cells and in cells lacking a paralog, we found that 22 out of 56 paralog pairs compensate for the lost interactions. An equivalent number of pairs exhibit the opposite behavior and require each other's presence for maintaining their interactions. These dependent paralogs generally interact physically, regulate each other's abundance, and derive from ancestral self-interacting proteins. This reveals that gene duplication may actually increase mutational fragility instead of robustness in a large number of cases.


Gene Duplication , Genes, Duplicate , Protein Interaction Maps/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Evolution, Molecular
5.
Brief Funct Genomics ; 15(2): 130-7, 2016 Mar.
Article En | MEDLINE | ID: mdl-26476431

Cellular architectures and signaling machineries are organized through protein-protein interactions (PPIs). High-throughput methods to study PPIs in yeast have opened a new perspective on the organization of the cell by allowing the study of whole protein interactomes. Recent investigations have moved from the description of this organization to the analysis of its dynamics by experimenting how protein interaction networks (PINs) are rewired in response to perturbations. Here we review studies that have used the budding yeast as an experimental system to explore these altered networks. Given the large space of possible PPIs and the diversity of potential genetic and environmental perturbations, high-throughput methods are an essential requirement to survey PIN perturbations on a large scale. Network perturbations are typically conceptualized as the removal of entire proteins (nodes), the modification of single PPIs (edges) or changes in growth conditions. These studies have revealed mechanisms of PPI regulation, PIN architectural organization, robustness and sensitivity to perturbations. Despite these major advances, there are still inherent limits to current technologies that lead to a trade-off between the number of perturbations and the number of PPIs that can be considered simultaneously. Nevertheless, as we exemplify here, targeted approaches combined with the existing resources remain extremely powerful to explore the inner organization of cells and their responses to perturbations.


Genotype , Phenotype , Protein Interaction Mapping , Alleles , Evolution, Molecular , Gene Deletion , Protein Interaction Mapping/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological
6.
Methods Mol Biol ; 1303: 197-215, 2016.
Article En | MEDLINE | ID: mdl-26235068

The yeast Saccharomyces cerevisiae, a unicellular eukaryotic model, has enabled major breakthroughs in our understanding of a plethora of cellular and molecular processes. Today, a 're-invention' of its use in fundamental and applied research is paving the way for a better understanding of the mechanisms causing neurodegeneration. The increasing emergence of neurodegenerative disorders is becoming more and more problematic in our ageing society. Most prevalent is Alzheimer's disease (AD), affecting more than 35 million people worldwide (Abbott, Nature 475, S2-S4, 2011) and causing an enormous burden on a personal and communal level. The disease is characterized by two major pathological hallmarks: extracellular amyloid plaques consisting mainly of deposits of amyloid ß (Aß) peptides, and intracellular neurofibrillary tangles (NFTs), consisting mainly of aggregates of hyperphosphorylated tau protein. Despite the huge importance of thoroughly understanding the underlying molecular mechanisms of neurodegeneration, progress has been slow. However, multiple complementary research methods are proving their value, particularly with the work done with S. cerevisiae, which combines well-established, fast genetic and molecular techniques with the ability to faithfully capture key molecular aspects of neurodegeneration. In this review chapter, we focus on the considerable progress made using S. cerevisiae as a model system for Alzheimer's disease.


Alzheimer Disease , Saccharomyces cerevisiae , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/toxicity , Animals , Humans , Protein Aggregates , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , tau Proteins/metabolism
7.
Biomacromolecules ; 16(3): 944-50, 2015 Mar 09.
Article En | MEDLINE | ID: mdl-25689632

The toxicity of amyloids, as Aß(1-42) involved in Alzheimer disease, is a subject under intense scrutiny. Many studies link their toxicity to the existence of various intermediate structures prior to fiber formation and/or their specific interaction with membranes. In this study we focused on the interaction between membrane models and Aß(1-42) peptides and variants (L34T, mG37C) produced in E. coli and purified in monomeric form. We evaluated the interaction of a toxic stable oligomeric form (oG37C) with membranes as comparison. Using various biophysical techniques as fluorescence and plasmon waveguide resonance, we clearly established that the oG37C interacts strongly with membranes leading to its disruption. All the studied peptides destabilized liposomes and accumulated slowly on the membrane (rate constant 0.02 min(-1)). Only the oG37C exhibited a particular pattern of interaction, comprising two steps: the initial binding followed by membrane reorganization. Cryo-TEM was used to visualize the peptide effect on liposome morphologies. Both oG37C and mG37C lead to PG membrane fragmentation. The PG membrane promotes peptide oligomerization, implicated in membrane disruption. WT (Aß(1-42)) also perturbs liposome organization with membrane deformation rather than disruption. For all the peptides studied, their interaction with the membranes changes their fibrillization process, with less fibers and more small aggregates being formed. These studies allowed to establish, a correlation between toxicity, fiber formation, and membrane disruption.


Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Cell Membrane Permeability , Kinetics , Protein Multimerization , Unilamellar Liposomes/chemistry
8.
PLoS One ; 9(8): e106224, 2014.
Article En | MEDLINE | ID: mdl-25166596

Hypoxia inducible factor 1α (HIF-1α) is a master regulator of tumor angiogenesis being one of the major targets for cancer therapy. Previous studies have shown that Histone Deacetylase Inhibitors (HDACi) block tumor angiogenesis through the inhibition of HIF-1α expression. As such, Vorinostat (Suberoylanilide Hydroxamic Acid/SAHA) and Romidepsin, two HDACis, were recently approved by the Food and Drug Administration (FDA) for the treatment of cutaneous T cell lymphoma. Although HDACis have been shown to affect HIF-1α expression by modulating its interactions with the Hsp70/Hsp90 chaperone axis or its acetylation status, the molecular mechanisms by which HDACis inhibit HIF-1α expression need to be further characterized. Here, we report that the FDA-approved HDACi Vorinostat/SAHA inhibits HIF-1α expression in liver cancer-derived cell lines, by a new mechanism independent of p53, prolyl-hydroxylases, autophagy and proteasome degradation. We found that SAHA or silencing of HDAC9 mechanism of action is due to inhibition of HIF-1α translation, which in turn, is mediated by the eukaryotic translation initiation factor--eIF3G. We also highlighted that HIF-1α translation is dramatically inhibited when SAHA is combined with eIF3H silencing. Taken together, we show that HDAC activity regulates HIF-1α translation, with HDACis such as SAHA representing a potential novel approach for the treatment of hepatocellular carcinoma.


Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver Neoplasms/metabolism , Protein Biosynthesis/drug effects , Cell Line, Tumor , Eukaryotic Initiation Factor-3/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , Histone Deacetylases , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Repressor Proteins/antagonists & inhibitors , Vorinostat
9.
PLoS One ; 8(11): e80262, 2013.
Article En | MEDLINE | ID: mdl-24244667

Amyloid beta (Aß) peptides produced by APP cleavage are central to the pathology of Alzheimer's disease. Despite widespread interest in this issue, the relationship between the auto-assembly and toxicity of these peptides remains controversial. One intriguing feature stems from their capacity to form anti-parallel ß-sheet oligomeric intermediates that can be converted into a parallel topology to allow the formation of protofibrillar and fibrillar Aß. Here, we present a novel approach to determining the molecular aspects of Aß assembly that is responsible for its in vivo toxicity. We selected Aß mutants with varying intracellular toxicities. In vitro, only toxic Aß (including wild-type Aß42) formed urea-resistant oligomers. These oligomers were able to assemble into fibrils that are rich in anti-parallel ß-sheet structures. Our results support the existence of a new pathway that depends on the folding capacity of Aß .


Amyloid beta-Peptides/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Animals , Circular Dichroism , Microscopy, Electron, Transmission , PC12 Cells , Rats
10.
Dis Model Mech ; 6(1): 206-16, 2013 Jan.
Article En | MEDLINE | ID: mdl-22888099

Alzheimer's disease is the most common neurodegenerative disease, associated with aggregation of amyloid-ß (Aß) peptides. The exact mechanism of neuronal cell dysfunction in Alzheimer's disease is poorly understood and numerous models have been used to decipher the mechanisms leading to cellular death. Yeast cells might be a good model to understand the intracellular toxicity triggered by Aß peptides. Indeed, yeast has been used as a model to examine protein functions or cellular pathways that mediate the secretion, aggregation and subsequent toxicity of proteins associated with human neurodegenerative disorders. In the present study, we use the yeast Saccharomyces cerevisiae as a model system to study the effects of intracellular Aß in fusion with green fluorescent protein. We sent this fusion protein into the secretory pathway and showed that intracellular traffic pathways are necessary for the generation of toxic species. Yeast PICALM orthologs are involved in cellular toxicity, indicating conservation of the mechanisms of toxicity from mammals to yeast. Finally, our model demonstrates the capacity for intracellular Aß to cross intracellular membranes and target mitochondrial organelles.


Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Monomeric Clathrin Assembly Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/toxicity , Biological Transport, Active , Endocytosis , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Models, Biological , Models, Neurological , Monomeric Clathrin Assembly Proteins/genetics , Oxygen Consumption , Protein Multimerization , Protein Processing, Post-Translational , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/toxicity , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
...