Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Nat Commun ; 15(1): 4883, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38849395

The human methyltransferase and transcriptional coactivator MLL4 and its paralog MLL3 are frequently mutated in cancer. MLL4 and MLL3 monomethylate histone H3K4 and contain a set of uncharacterized PHD fingers. Here, we report a novel function of the PHD2 and PHD3 (PHD2/3) fingers of MLL4 and MLL3 that bind to ASXL2, a component of the Polycomb repressive H2AK119 deubiquitinase (PR-DUB) complex. The structure of MLL4 PHD2/3 in complex with the MLL-binding helix (MBH) of ASXL2 and mutational analyses reveal the molecular mechanism which is conserved in homologous ASXL1 and ASXL3. The native interaction of the Trithorax MLL3/4 complexes with the PR-DUB complex in vivo depends solely on MBH of ASXL1/2, coupling the two histone modifying activities. ChIP-seq analysis in embryonic stem cells demonstrates that MBH of ASXL1/2 is required for the deubiquitinase BAP1 recruitment to MLL4-bound active enhancers. Our findings suggest an ASXL1/2-dependent functional link between the MLL3/4 and PR-DUB complexes.


DNA-Binding Proteins , Histone-Lysine N-Methyltransferase , Protein Binding , Repressor Proteins , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Enhancer Elements, Genetic , HEK293 Cells , PHD Zinc Fingers , Histones/metabolism
2.
J Biol Chem ; 300(3): 105698, 2024 Mar.
Article En | MEDLINE | ID: mdl-38301887

Nuclear actin has been demonstrated to be essential for optimal transcription, but the molecular mechanisms and direct binding partner for actin in the RNA polymerase complex have remained unknown. By using purified proteins in a variety of biochemical assays, we demonstrate a direct and specific interaction between monomeric actin and Cdk9, the kinase subunit of the positive transcription elongation factor b required for RNA polymerase II pause-release. This interaction efficiently prevents actin polymerization, is not dependent on kinase activity of Cdk9, and is not involved with releasing positive transcription elongation factor b from its inhibitor 7SK snRNP complex. Supporting the specific role for actin in the elongation phase of transcription, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) reveals that actin interacts with genes only upon their active transcription elongation. This study therefore provides novel insights into the mechanisms by which actin facilitates the transcription process.


Actins , Cyclin-Dependent Kinase 9 , Positive Transcriptional Elongation Factor B , Humans , Actins/genetics , Actins/metabolism , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic
3.
Front Cell Dev Biol ; 10: 1115903, 2022.
Article En | MEDLINE | ID: mdl-36712963

Acetylation of lysine residues on histone tails is an important post-translational modification (PTM) that regulates chromatin dynamics to allow gene transcription as well as DNA replication and repair. Histone acetyltransferases (HATs) are often found in large multi-subunit complexes and can also modify specific lysine residues in non-histone substrates. Interestingly, the presence of various histone PTM recognizing domains (reader domains) in these complexes ensures their specific localization, enabling the epigenetic crosstalk and context-specific activity. In this review, we will cover the biochemical and functional properties of the MOZ-BRPF1 acetyltransferase complex, underlining its role in normal biological processes as well as in disease progression. We will discuss how epigenetic reader domains within the MOZ-BRPF1 complex affect its chromatin localization and the histone acetyltransferase specificity of the complex. We will also summarize how MOZ-BRPF1 is linked to development via controlling cell stemness and how mutations or changes in expression levels of MOZ/BRPF1 can lead to developmental disorders or cancer. As a last touch, we will review the latest drug candidates for these two proteins and discuss the therapeutic possibilities.

4.
Mol Biol Cell ; 32(12): 1158-1170, 2021 06 01.
Article En | MEDLINE | ID: mdl-33826365

The endoplasmic reticulum (ER) is composed of a controlled ratio of sheets and tubules, which are maintained by several proteins with multiple functions. Reticulons (RTNs), especially RTN4, and DP1/Yop1p family members are known to induce ER membrane curvature. RTN4B is the main RTN4 isoform expressed in nonneuronal cells. In this study, we identified FAM134C as a RTN4B interacting protein in mammalian, nonneuronal cells. FAM134C localized specifically to the ER tubules and sheet edges. Ultrastructural analysis revealed that overexpression of FAM134C induced the formation of unbranched, long tubules or dense globular structures composed of heavily branched narrow tubules. In both cases, tubules were nonmotile. ER tubulation was dependent on the reticulon homology domain (RHD) close to the N-terminus. FAM134C plays a role in the autophagy pathway as its level elevated significantly upon amino acid starvation but not during ER stress. Moreover, FAM134C depletion reduced the number and size of autophagic structures and the amount of ER as a cargo within autophagic structures under starvation conditions. Dominant-negative expression of FAM134C forms with mutated RHD or LC3 interacting region also led to a reduced number of autophagic structures. Our results suggest that FAM134C provides a link between regulation of ER architecture and ER turnover by promoting ER tubulation required for subsequent ER fragmentation and engulfment into autophagosomes.


Autophagy-Related Proteins/physiology , Autophagy , Endoplasmic Reticulum/metabolism , Membrane Proteins/physiology , Nogo Proteins/metabolism , Autophagy-Related Proteins/genetics , Cell Line , Endoplasmic Reticulum/physiology , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/genetics , Protein Domains
5.
J Cell Sci ; 132(8)2019 04 17.
Article En | MEDLINE | ID: mdl-30890647

In addition to its essential functions within the cytoskeleton, actin also localizes to the cell nucleus, where it is linked to many important nuclear processes from gene expression to maintenance of genomic integrity. However, the molecular mechanisms by which actin operates in the nucleus remain poorly understood. Here, we have used two complementary mass spectrometry (MS) techniques, AP-MS and BioID, to identify binding partners for nuclear actin. Common high-confidence interactions highlight the role of actin in chromatin-remodeling complexes and identify the histone-modifying complex human Ada-Two-A-containing (hATAC) as a novel actin-containing nuclear complex. Actin binds directly to the hATAC subunit KAT14, and modulates its histone acetyl transferase activity in vitro and in cells. Transient interactions detected through BioID link actin to several steps of transcription as well as to RNA processing. Alterations in nuclear actin levels disturb alternative splicing in minigene assays, likely by affecting the transcription elongation rate. This interactome analysis thus identifies both novel direct binding partners and functional roles for nuclear actin, as well as forms a platform for further mechanistic studies on how actin operates during essential nuclear processes.This article has an associated First Person interview with the first author of the paper.


Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Nucleus/chemistry , Cytoskeleton/metabolism , Histone Acetyltransferases/metabolism , RNA Splicing , Adaptor Proteins, Signal Transducing/genetics , Cell Nucleus/metabolism , Chromatin Assembly and Disassembly , Gene Expression , HeLa Cells , Histone Acetyltransferases/genetics , Humans , Mass Spectrometry , Transcriptional Activation
6.
Handb Exp Pharmacol ; 235: 311-329, 2017.
Article En | MEDLINE | ID: mdl-27316910

Although most people still associate actin mainly with the cytoskeleton, several lines of evidence, with the earliest studies dating back to decades ago, have emphasized the importance of actin also inside the cell nucleus. Actin has been linked to many gene expression processes from gene activation to chromatin remodeling, but also to maintenance of genomic integrity and intranuclear movement of chromosomes and chromosomal loci. Recent advances in visualizing different forms and dynamic properties of nuclear actin have clearly advanced our understanding of the basic concepts by which actin operates in the nucleus. In this chapter we address the different breakthroughs in nuclear actin studies, as well as discuss the regulation nuclear actin and the importance of nuclear actin dynamics in relation to its different nuclear functions. Our aim is to highlight the fact that actin should be considered as an essential component of the cell nucleus, and its nuclear actions should be taken into account also in experiments on cytoplasmic actin networks.


Actins/physiology , Cell Nucleus/chemistry , Cytoskeleton/physiology , Actins/analysis , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Chromatin Assembly and Disassembly , DNA-Directed RNA Polymerases/genetics , Gene Expression , Humans , Transcriptional Activation
7.
Nat Commun ; 6: 5978, 2015 Jan 14.
Article En | MEDLINE | ID: mdl-25585691

Controlled transport of macromolecules between the cytoplasm and nucleus is essential for homeostatic regulation of cellular functions. For instance, gene expression entails coordinated nuclear import of transcriptional regulators to activate transcription and nuclear export of the resulting messenger RNAs for cytoplasmic translation. Here we link these two processes by reporting a novel role for the mRNA export factor Ddx19/Dbp5 in nuclear import of MKL1, the signal-responsive transcriptional activator of SRF. We show that Ddx19 is not a general nuclear import factor, and that its specific effect on MKL1 nuclear import is separate from its role in mRNA export. Both helicase and nuclear pore-binding activities of Ddx19 are dispensable for MKL1 nuclear import, but RNA binding is required. Mechanistically, Ddx19 operates by modulating the conformation of MKL1, which affects its interaction with Importin-ß for efficient nuclear import. Thus, Ddx19 participates in mRNA export, translation and nuclear import of a key transcriptional regulator.


Active Transport, Cell Nucleus , DEAD-box RNA Helicases/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Trans-Activators/metabolism , Animals , Cell Nucleus/metabolism , Cytoplasm/metabolism , HeLa Cells , Homeostasis , Humans , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Protein Binding , Protein Conformation , RNA/metabolism , beta Karyopherins/metabolism
8.
J Cell Sci ; 126(Pt 2): 497-507, 2013 Jan 15.
Article En | MEDLINE | ID: mdl-23203801

Phactr proteins bind actin and protein phosphatase 1 (PP1), and are involved in processes ranging from angiogenesis to cell cycle regulation. Phactrs share a highly conserved RPEL domain with the myocardin-related transcription factor (MRTF) family, where actin binding to this domain regulates both the nuclear localization and the activity of these transcription coactivators. We show here that in contrast to MRTF-A, the RPEL domain is dispensable for the subcellular localization of Phactr4. Instead, we find the domain facilitating competitive binding of monomeric actin and PP1 to Phactr4. Binding of actin to Phactr4 influences the activity of PP1 and the phosphorylation status of one of its downstream targets, cofilin. Consequently, at low actin monomer levels, Phactr4 guides PP1 to dephosphorylate cofilin. This active form of cofilin is then able to sever and depolymerize actin filaments and thus restore the actin monomer pool. Accordingly, our data discloses the central role of Phactr4 in a feedback loop, where actin monomers regulate their own number via the activation of a key regulator of actin dynamics. Depending on the protein context, the RPEL domain can thus elicit mechanistically different responses to maintain the cellular actin balance.


Actins/metabolism , Cofilin 1/metabolism , Nuclear Proteins/metabolism , Protein Phosphatase 1/metabolism , Amino Acid Sequence , Animals , Cytoskeletal Proteins , Mice , Molecular Sequence Data , NIH 3T3 Cells , Nuclear Proteins/genetics
...