Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nature ; 630(8016): 368-374, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867128

RESUMEN

Despite its disordered liquid-like structure, glass exhibits solid-like mechanical properties1. The formation of glassy material occurs by vitrification, preventing crystallization and promoting an amorphous structure2. Glass is fundamental in diverse fields of materials science, owing to its unique optical, chemical and mechanical properties as well as durability, versatility and environmental sustainability3. However, engineering a glassy material without compromising its properties is challenging4-6. Here we report the discovery of a supramolecular amorphous glass formed by the spontaneous self-organization of the short aromatic tripeptide YYY initiated by non-covalent cross-linking with structural water7,8. This system uniquely combines often contradictory sets of properties; it is highly rigid yet can undergo complete self-healing at room temperature. Moreover, the supramolecular glass is an extremely strong adhesive yet it is transparent in a wide spectral range from visible to mid-infrared. This exceptional set of characteristics is observed in a simple bioorganic peptide glass composed of natural amino acids, presenting a multi-functional material that could be highly advantageous for various applications in science and engineering.


Asunto(s)
Adhesivos , Vidrio , Oligopéptidos , Adhesivos/química , Vidrio/química , Temperatura , Vitrificación , Agua/química , Oligopéptidos/química , Tirosina/química , Luz , Rayos Infrarrojos
2.
Chem Soc Rev ; 53(8): 3640-3655, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38450536

RESUMEN

Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.


Asunto(s)
Enlace de Hidrógeno , Péptidos , Péptidos/química , Porosidad
3.
Chem Commun (Camb) ; 60(19): 2621-2624, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38299634

RESUMEN

In contrast to short helical peptides, constrained peptides, and foldamers, the design and fabrication of crystalline 3D frameworks from the ß-sheet peptides are rare because of their high self-aggregation propensity to form 1D architectures. Herein, we demonstrate the formation of a 3D porous honeycomb framework through the silver coordination of a minimal ß-sheet forming a peptide having terminal metal coordinated 4- and 3-pyridyl ligands.


Asunto(s)
Péptidos , Pliegue de Proteína , Conformación Proteica en Lámina beta , Porosidad , Péptidos/química , Plata
4.
Chem Sci ; 14(33): 8897-8904, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37621434

RESUMEN

Artificial biomimetic chloride anionophores have shown promising applications as anticancer scaffolds. Importantly, stimuli-responsive chloride transporters that can be selectively activated inside the cancer cells to avoid undesired toxicity to normal, healthy cells are very rare. Particularly, light-responsive systems promise better applicability for photodynamic therapy because of their spatiotemporal controllability, low toxicity, and high tunability. Here, in this work, we report o-nitrobenzyl-linked, benzimidazole-based singly and doubly protected photocaged protransporters 2a, 2b, 3a, and 3b, respectively, and benzimidazole-2-amine-based active transporters 1a-1d. Among the active compounds, trifluoromethyl-based anionophore 1a showed efficient ion transport activity (EC50 = 1.2 ± 0.2 µM). Detailed mechanistic studies revealed Cl-/NO3- antiport as the main ion transport process. Interestingly, double protection with photocages was found to be necessary to achieve the complete "OFF-state" that could be activated by external light. The procarriers were eventually activated inside the MCF-7 cancer cells to induce phototoxic cell death.

5.
Chem Soc Rev ; 52(17): 6191-6220, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37585216

RESUMEN

The development of next-generation bioelectronics, as well as the powering of consumer and medical devices, require power sources that are soft, flexible, extensible, and even biocompatible. Traditional energy storage devices (typically, batteries and supercapacitors) are rigid, unrecyclable, offer short-lifetime, contain hazardous chemicals and possess poor biocompatibility, hindering their utilization in wearable electronics. Therefore, there is a genuine unmet need for a new generation of innovative energy-harvesting materials that are soft, flexible, bio-compatible, and bio-degradable. Piezoelectric gels or PiezoGels are a smart crystalline form of gels with polar ordered structures that belongs to the broader family of piezoelectric material, which generate electricity in response to mechanical stress or deformation. Given that PiezoGels are structurally similar to hydrogels, they offer several advantages including intrinsic chirality, crystallinity, degree of ordered structures, mechanical flexibility, biocompatibility, and biodegradability, emphasizing their potential applications ranging from power generation to bio-medical applications. Herein, we describe recent examples of new functional PiezoGel materials employed for energy harvesting, sensing, and wound dressing applications. First, this review focuses on the principles of piezoelectric generators (PEGs) and the advantages of using hydrogels as PiezoGels in energy and biomedical applications. Next, we provide a detailed discussion on the preparation, functionalization, and fabrication of PiezoGel-PEGs (P-PEGs) for the applications of energy harvesting, sensing and wound healing/dressing. Finally, this review concludes with a discussion of the current challenges and future directions of P-PEGs.


Asunto(s)
Suministros de Energía Eléctrica , Hidrogeles , Electricidad , Electrónica , Sustancias Peligrosas
6.
Angew Chem Int Ed Engl ; 62(3): e202214984, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36408916

RESUMEN

Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3 BX6 type cyanometallate [Ph2 (i PrNH)2 P]3 [Fe(CN)6 ] (1), which shows a ferroelectric saturation polarization (Ps ) of 3.71 µC cm-2 . Compound 1 exhibits a high electrostrictive coefficient (Q33 ) of 0.73 m4  C-2 , far exceeding those of piezoceramics (0.034-0.096 m4  C-2 ). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1-TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 µW cm-2 .

7.
Angew Chem Int Ed Engl ; 62(6): e202214583, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36434750

RESUMEN

Flexible and biocompatible metal peptide frameworks (MPFs) derived from short and ultra-short peptides have been explored for the storage of greenhouse gases, molecular recognition, and chiral transformations. In addition to short flexible peptides, peptides with specifically folded conformations have recently been utilized to fabricate a variety of metal helix frameworks (MHFs). The secondary structures of the peptides govern the structure-assembly relationship and thereby control the formation of three-dimensional (3D)-MHFs. Particularly, the hierarchical structural organization of peptide-based MHFs has not yet been discussed in detail. Here, we describe the recent progress of metal-driven folded peptide assembly to construct 3D porous structures for use in future energy storage, chiral recognition, and biomedical applications, which could be envisioned as an alternative to the conventional metal-organic frameworks (MOFs).


Asunto(s)
Estructuras Metalorgánicas , Péptidos , Péptidos/química , Estructuras Metalorgánicas/química , Estructura Secundaria de Proteína
8.
Chemistry ; 29(10): e202202887, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399427

RESUMEN

Artificial channels capable of facilitating the transport of Cl- ions across cell membranes while being nontoxic to the cells are rare. Such synthetic ion channels can mimic the functions of membrane transport proteins and, therefore, have the potential to treat channelopathies by replacing defective ion channels. Here we report isophthalic acid-based structurally simple molecules 1 a and 2 a, which self-assemble to render supramolecular nanochannels that allow selective transport of Cl- ions. As evident from the single-crystal X-ray diffraction analysis, the self-assembly is governed by intermolecular hydrogen bonding and π-π stacking interactions. The MD simulation studies for both 1 a and 2 a confirmed the formation of stable Cl- channel assembly in the lipid membrane and Cl- transport through them. The MQAE assay showed the efficacy of the compounds in delivering Cl- ions into cells, and the MTT assays proved that the compounds are nontoxic to cells even at a concentration of 100 µM.


Asunto(s)
Canales de Cloruro , Ácidos Ftálicos , Canales Iónicos/química , Células Epiteliales
9.
Chem Sci ; 13(42): 12533-12539, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36382295

RESUMEN

The isolation of carbon-centered diradicals is always challenging due to synthetic difficulties and their limited stability. Herein we report the synthesis of a trans-1,4-cyclohexylene bridged bis-NHC-CAAC dimer derived thermally stable dicationic diradical. The diradical character of this compound was confirmed by EPR spectroscopy. The variable temperature EPR study suggests the singlet state to be marginally more stable than the triplet state (2J = -5.5 cm-1 (ΔE ST = 0.065 kJ mol-1)). The presence of the trans-1,4-cyclohexylene bridge is instrumental for the successful isolation of this dicationic diradical. Notably, in the case of ethylene or propylene bridged bis-NHC-CAAC dimers, the corresponding dicationic diradicals are transient and rearrange to hydrogen abstracted products.

10.
Macromol Rapid Commun ; 43(19): e2200223, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35920234

RESUMEN

Ordered supramolecular hydrogels assembled by modified aromatic amino acids often exhibit low mechanical rigidity. Aiming to stabilize the hydrogel and understand the impact of conformational freedom and hydrophobicity on the self-assembly process, two building blocks based on 9-fluorenyl-methoxycarbonyl-phenylalanine (Fmoc-Phe) gelator which contain two extra methylene units in the backbone, generating Fmoc-γPhe and Fmoc-(3-hydroxy)-γPhe are designed. Fmoc-γPhe spontaneously assembled in aqueous media forming a hydrogel with exceptional mechanical and thermal stability. Moreover, Fmoc-(3-hydroxy)-γPhe, with an extra backbone hydroxyl group decreasing its hydrophobicity while maintaining some molecular flexibility, self-assembled into a transient fibrillar hydrogel, that later formed microcrystalline aggregates through a phase transition. Molecular dynamics simulations and single crystal X-ray analyses reveal the mechanism underlying the two residues' distinct self-assembly behaviors. Finally, Fmoc-γPhe and Fmoc-(3-OH)-γPhe co-assembly to form a supramolecular hydrogel with notable mechanical properties are demonstrated. It has been believed that the understanding of the structure-assembly relationship will enable the design of new functional amino acid-based hydrogels.


Asunto(s)
Fluorenos , Fenilalanina , Aminoácidos/química , Fluorenos/química , Hidrogeles/química , Fenilalanina/análogos & derivados , Fenilalanina/química , Polímeros
11.
Chem Commun (Camb) ; 58(44): 6445-6448, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35548938

RESUMEN

The occurrence of sequential multiple aromatic residues in a helical sequence is rare compared to the ß-sheet rich structure. Here, using helix promoting α-aminoisobutyric acid (Aib) residues, we unravel atomistic details of the helical secondary structure formation and the super helical assembly of two heptapeptides composed of sequential five and six phenylalanine (Phe) residues.


Asunto(s)
Oligopéptidos , Péptidos , Oligopéptidos/química , Péptidos/química , Fenilalanina/química , Conformación Proteica
12.
ACS Mater Au ; 2(2): 124-131, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36855770

RESUMEN

Perovskite-structured compounds containing organic cations and inorganic anions have gained prominence as materials for next-generation electronic and energy devices. Hybrid materials possessing ferro- and piezoelectric properties are in recent focus for mechanical energy harvesting (nanogenerator) applications. Here, we report the ferroelectric behavior of A2BX4-type halogenocuprate materials supported by heteroleptic phosphonium cations. These lead-free discrete Cu(II) halides [Ph3MeP]2[CuCl4] (1) and [Ph3MeP]2[CuBr4] (2) exhibit a remnant polarization (P r) of 17.16 and 26.02 µC cm-2, respectively, at room temperature. Furthermore, flexible polymer films were prepared with various weight percentage (wt %) compositions of 1 in thermoplastic polyurethane (TPU) and studied for mechanical energy harvesting applications. A highest peak-to-peak voltage output of 25 V and power density of 14.1 µW cm-2 were obtained for the optimal 15 wt % 1-TPU composite film. The obtained output voltages were utilized for charging a 100 µF electrolytic capacitor that reaches its maximum charging point within 30 s with sizable stored energies and accumulated charges.

13.
Org Lett ; 23(19): 7319-7324, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519509

RESUMEN

Photoswitchable acylhydrazone-based synthetic anionophores are reported. Single-crystal X-ray structure and 1H NMR titration studies confirmed the chloride binding in solid and solution states. The ion transport activity of 1a was greatly attenuated through a phototriggered E to Z photoisomerization process, and the photoisomerized deactivated state showed high kinetic stability due to an intramolecular hydrogen bond. Switchable "OFF-ON" transport activity was achieved by the application of light and acid-catalyzed reactivation process.

14.
Angew Chem Int Ed Engl ; 59(26): 10368-10373, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32207201

RESUMEN

Organic-inorganic hybrid ferroelectrics are an exciting class of molecular materials with promising applications in the area of energy and electronics. The synthesis, ferroelectric and piezoelectric energy harvesting behavior of a 3d metal ion-containing A4 BX6 type organic-inorganic hybrid salt [Ph3 MeP]4 [Ni(NCS)6 ] (1) is now presented. P-E hysteresis loop studies on 1 show a remnant ferroelectric polarization value of 18.71 µC cm-2 , at room temperature. Composite thermoplastic polyurethane (TPU) devices with 5, 10, 15 and 20 wt % compositions of 1 were prepared and employed for piezoelectric energy harvesting studies. A maximum output voltage of 19.29 V and a calculated power density value of 2.51 mW cm-3 were observed for the 15 wt % 1-TPU device. The capacitor charging experiments on the 15 wt % 1-TPU composite device shows an excellent energy storage performance with the highest stored energies and measured charges of 198.8 µJ and 600 µC, respectively.

15.
Dalton Trans ; 48(21): 7331-7336, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-30839960

RESUMEN

Molecular ferroelectric materials are an exciting class of materials for potential applications in energy and electronics. Herein, we report examples of hydrogen-bonded binary salts of diphenyl diisopropylamino phosphonium halides [Ph2(iPrNH)2P]·X [DPDP·X, X = Cl, Br, I] which show dielectric, piezoelectric and NLO properties and some potentially ferroelectric attributes at room temperature. The phosphonium bromide salt was prepared by bromination of the phosphine precursor Ph2PCl and its subsequent treatment with isopropyl amine. The chloride and iodide salts were synthesized by the halogen exchange reaction of the bromide salt. The variable temperature single crystal X-ray analysis indicates the retention of the polar non-centrosymmetric phase of these materials for a wide range of temperatures from 100 to 400 K and above. All these assemblies were shown to exhibit 1D H-bonded chain structures along the crystallographic b-axis. The P-E loop measurements of these salts gave curves similar to those of non-linear leaky dielectric materials. However, the vertical piezoresponse force microscopy (V-PFM) analyses showed the existence of polarizable domain inversions indicating the possibility of ferroelectric behaviour in these materials. The temperature dependent dielectric measurements on these salts support the absence of phase transition temperatures in these assemblies. Also, bias-dependent PFM studies reveal their piezoelectric nature as the obtained converse piezoelectric coefficients are consistent with the d33 values obtained by the direct quasi-static methods.

16.
Dalton Trans ; 47(41): 14411-14415, 2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30256354

RESUMEN

Herein we report two different reactivity modes of lithium(aryl)(boryl)amide, 4, when it is reacted with chlorosilanes such as SiCl4 and MeSiHCl2, and chlorophosphine, Ph2PCl. Thus, the reaction of lithium(aryl)(boryl)amide, 4, with MeSiHCl2 leads exclusively to an N-substitution product, 6. On the other hand, the reaction of 4 with SiCl4 and Ph2PCl proceeds completely differently affording exclusively p-aryl-C-substitution products, 5 and 7, respectively.

17.
Angew Chem Int Ed Engl ; 57(29): 9054-9058, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-29851252

RESUMEN

A new binary organic salt diphenyl diisopropylamino phosphonium hexaflurophosphate (DPDP⋅PF6 ) was shown to exhibit a good ferroelectric response and employed for mechanical energy harvesting application. The phosphonium salt crystallizes in the monoclinic noncentrosymmetric space group Cc and exhibits an H-bonded 1D chain structure due to N-H⋅⋅⋅F interactions. Ferroelectric measurements on the single crystals of DPDP⋅PF6 gave a well-saturated rectangular hysteresis loop with a remnant (Pr ) polarization value of 6 µC cm-2 . Further, composite devices based on polydimethylsiloxane (PDMS) films for various weight percentages (3, 5, 7, 10 and 20 wt %) of DPDP⋅PF6 were prepared and examined for power generation by using an impact test setup. A maximum output peak-to-peak voltage (VPP ) of 8.5 V and an output peak-to-peak current (IPP ) of 0.5 µA was obtained for the non-poled composite film with 10 wt % of DPDP⋅PF6 . These results show the efficacy of organic ferroelectric substances as potential micropower generators.

18.
Chem Commun (Camb) ; 53(61): 8592-8595, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28718477

RESUMEN

A facile, straightforward synthesis of N-heterocyclic carbene (NHC)-stabilized 1-hydrosilaimine starting from a silicon(iv)-precursor is reported. It has been employed for the addition of an O-H bond of water under ambient conditions without any additional catalyst.

19.
Inorg Chem ; 55(6): 3098-104, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26958986

RESUMEN

Synthesis of new cyclotetrasiloxane scaffolds containing peripherally functionalized 3-pyridyl moieties, [MeSiO(CH═CH(3)Py)]4 (L(1)) and [MeSiO(CH2CH2(3)Py)]4 (L(2)), and their reactivity studies with certain d(10) metal ions are reported. The ligand L(1) is obtained by the Heck-coupling reaction of tetramethyl tetravinyl tetrasiloxane (D4(vi)) and 3-bromopyridine in the presence of the Pd(0) catalysts. The as-synthesized ligand L(1) shows the presence of three stereoisomers, cis-trans-cis (L(1A)), cis-cis-trans (L(1B)), and all-trans (L(1C)), which are quantitatively separated by column chromatography. Subsequent reduction of L(1A), L(1B), and L(1C) with triethylsilane in the presence of catalytic amounts of Pd/C leads to the formation of the ligands L(2A), L(2B), and L(2C) with retention of stereochemistry due to the precursor moieties. Treatment of ZnI2 with L(1A) gives a one-dimensional coordination framework [(L(1A))4(ZnI2)2]∞, 1. These 1D-chains are further connected by π-π stacking interactions between the pyridyl groups of the adjacent chains leading to the formation of a three-dimensional network with the topology of a PtS net. The reaction of silver nitrate with ligand L(1B) gives a chain like one-dimensional cationic coordination polymer {[(L(1B))4Ag2]·2NO3·H2O·CH3OH }∞, 2, consisting of two different kinds of 32-membered macrocycles. Treatment of the all-trans ligand L(2C) with copper(I) iodide salt results in the formation of a cubane-type Cu4I4 cluster MOF [(L(2C))4Cu4I4]∞, 3, in a two-dimensional 4-connected uninodal sql/Shubnikov tetragonal plane net topology represented by the Schläfli symbol {4(4).6(2)}. This MOF displays a thermochromic luminescence behavior due to Cu4I4 clusters showing an orange emission at 298 K and a blue emission at 77 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...