Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(2): 530-539, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38345536

RESUMEN

PURPOSE: Single-agent checkpoint inhibition is effective in a minority of patients with platinum-refractory urothelial carcinoma; therefore, the efficacy of combining low-dose paclitaxel with pembrolizumab was tested. MATERIALS AND METHODS: This was a prospective, single-arm phase II trial with key inclusion criteria of imaging progression within 12 months of platinum therapy and Eastern Cooperative Oncology Group ≤1. Treatment was pembrolizumab 200 mg day 1 and paclitaxel 80 mg/m2 days 1 and 8 of a 21-day cycle for up to eight cycles unless progression or unacceptable adverse events (AE). The primary endpoint was overall response rate (ORR) with overall survival (OS), 6-month progression-free survival (PFS), and safety as key secondary endpoints. Change in circulating immune cell populations, plasma, and urinary miRs were evaluated. RESULTS: Twenty-seven patients were treated between April 2016 and June 2020, with median follow-up of 12.4 months. Baseline median age was 68 years, with 81% men and 78% non-Hispanic White. ORR was 33% by intention to treat and 36% in imaging-evaluable patients with three complete responses. Six-month PFS rate was 48.1% [95% confidence interval (CI): 28.7-65.2] and median OS 12.4 months (95% CI: 8.7 months to not reached). Common ≥ grade 2 possibly-related AEs were anemia, lymphopenia, hyperglycemia, and fatigue; grade 3/4 AEs occurred in 56%, including two immune-mediated AEs (pneumonitis and nephritis). Responding patients had a higher percentage of circulating CD4+IFNγ+ T cells. Levels of some miRs, including plasma miR 181 and miR 223, varied in responders compared with nonresponders. CONCLUSIONS: The addition of low-dose paclitaxel to pembrolizumab is active and safe in platinum-refractory urothelial carcinoma. SIGNIFICANCE: We found that combining pembrolizumab with low-dose paclitaxel may be effective in patients with urothelial carcinoma progressing on platinum chemotherapy, with favorable safety profiles.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma de Células Transicionales , MicroARNs , Neoplasias de la Vejiga Urinaria , Masculino , Humanos , Anciano , Femenino , Paclitaxel/efectos adversos , Carcinoma de Células Transicionales/tratamiento farmacológico , Platino (Metal)/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Estudios Prospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , MicroARNs/uso terapéutico
2.
J Gen Virol ; 94(Pt 8): 1818-1826, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23596269

RESUMEN

The triple-layered rotavirus virion encases an 11-segmented, dsRNA genome and 11-12 copies of the viral polymerase (VP1). VP1 transcribes and replicates the genome while tethered beneath the VP2 core shell. Genome replication (i.e. minus-strand RNA synthesis) by VP1 occurs in association with core assembly. During this process, VP2 directly engages VP1, thereby (i) packaging the polymerase into a nascent core and (ii) triggering the enzyme to initiate minus-strand RNA synthesis on bound plus-strand RNA templates. Recent work has shed light on VP2 regions important for VP1 enzymic activity. In the current study, we sought to investigate VP2 subdomains involved in the encapsidation of VP1 into recombinant virus-like particles (VLPs), which are formed of VP2 and the middle layer virion protein (VP6). We showed that strain SA11 VLPs efficiently encapsidated SA11 VP1, but not the genetically divergent Bristol VP1. VLPs made with an SA11 VP2 mutant lacking residues 1-10 of the amino-terminal domain (NTD) were still able to encapsidate VP1; however, removal of the entire NTD (residues 1-102) completely abolished polymerase packaging. We also showed that a chimeric VP2 protein containing the NTD and dimer-forming subdomain of strain Bristol VP2 can efficiently encapsidate SA11 VP1. These results suggest that the VP2 NTD and dimer-forming subdomain play important, albeit non-specific, roles in both VP1 packaging and activation. When combined with previous work, the results of this study support the notion that the same VP2 regions that engage VP1 during activation are also involved in packaging the enzyme into the core.


Asunto(s)
Proteínas de la Cápside/metabolismo , Rotavirus/fisiología , Proteínas del Núcleo Viral/metabolismo , Ensamble de Virus , Proteínas de la Cápside/genética , Análisis Mutacional de ADN , Humanos , Mutación , Dominios y Motivos de Interacción de Proteínas , Eliminación de Secuencia , Proteínas del Núcleo Viral/genética
3.
Nucleic Acids Res ; 39(Database issue): D830-4, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21123190

RESUMEN

The Bovine Genome Database (BGD; http://BovineGenome.org) strives to improve annotation of the bovine genome and to integrate the genome sequence with other genomics data. BGD includes GBrowse genome browsers, the Apollo Annotation Editor, a quantitative trait loci (QTL) viewer, BLAST databases and gene pages. Genome browsers, available for both scaffold and chromosome coordinate systems, display the bovine Official Gene Set (OGS), RefSeq and Ensembl gene models, non-coding RNA, repeats, pseudogenes, single-nucleotide polymorphism, markers, QTL and alignments to complementary DNAs, ESTs and protein homologs. The Bovine QTL viewer is connected to the BGD Chromosome GBrowse, allowing for the identification of candidate genes underlying QTL. The Apollo Annotation Editor connects directly to the BGD Chado database to provide researchers with remote access to gene evidence in a graphical interface that allows editing and creating new gene models. Researchers may upload their annotations to the BGD server for review and integration into the subsequent release of the OGS. Gene pages display information for individual OGS gene models, including gene structure, transcript variants, functional descriptions, gene symbols, Gene Ontology terms, annotator comments and links to National Center for Biotechnology Information and Ensembl. Each gene page is linked to a wiki page to allow input from the research community.


Asunto(s)
Bovinos/genética , Bases de Datos Genéticas , Genómica , Anotación de Secuencia Molecular , Animales , Genoma , Modelos Genéticos , Sitios de Carácter Cuantitativo , Alineación de Secuencia , Programas Informáticos , Integración de Sistemas
4.
BMC Genomics ; 11: 645, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-21092105

RESUMEN

BACKGROUND: A goal of the Bovine Genome Database (BGD; http://BovineGenome.org) has been to support the Bovine Genome Sequencing and Analysis Consortium (BGSAC) in the annotation and analysis of the bovine genome. We were faced with several challenges, including the need to maintain consistent quality despite diversity in annotation expertise in the research community, the need to maintain consistent data formats, and the need to minimize the potential duplication of annotation effort. With new sequencing technologies allowing many more eukaryotic genomes to be sequenced, the demand for collaborative annotation is likely to increase. Here we present our approach, challenges and solutions facilitating a large distributed annotation project. RESULTS AND DISCUSSION: BGD has provided annotation tools that supported 147 members of the BGSAC in contributing 3,871 gene models over a fifteen-week period, and these annotations have been integrated into the bovine Official Gene Set. Our approach has been to provide an annotation system, which includes a BLAST site, multiple genome browsers, an annotation portal, and the Apollo Annotation Editor configured to connect directly to our Chado database. In addition to implementing and integrating components of the annotation system, we have performed computational analyses to create gene evidence tracks and a consensus gene set, which can be viewed on individual gene pages at BGD. CONCLUSIONS: We have provided annotation tools that alleviate challenges associated with distributed annotation. Our system provides a consistent set of data to all annotators and eliminates the need for annotators to format data. Involving the bovine research community in genome annotation has allowed us to leverage expertise in various areas of bovine biology to provide biological insight into the genome sequence.


Asunto(s)
Bovinos/genética , Bases de Datos Genéticas , Genoma/genética , Anotación de Secuencia Molecular , Animales , Internet , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA