Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1015, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160260

RESUMEN

The deep-sea remains the biggest challenge to biodiversity exploration, and anthropogenic disturbances extend well into this realm, calling for urgent management strategies. One of the most diverse, productive, and vulnerable ecosystems in the deep sea are sponge grounds. Currently, environmental DNA (eDNA) metabarcoding is revolutionising the field of biodiversity monitoring, yet complex deep-sea benthic ecosystems remain challenging to assess even with these novel technologies. Here, we evaluate the effectiveness of whole-community metabarcoding to characterise metazoan diversity in sponge grounds across the North Atlantic by leveraging the natural eDNA sampling properties of deep-sea sponges themselves. We sampled 97 sponge tissues from four species across four North-Atlantic biogeographic regions in the deep sea and screened them using the universal COI barcode region. We recovered unprecedented levels of taxonomic diversity per unit effort, especially across the phyla Chordata, Cnidaria, Echinodermata and Porifera, with at least 406 metazoan species found in our study area. These assemblages identify strong spatial patterns in relation to both latitude and depth, and detect emblematic species currently employed as indicators for these vulnerable habitats. The remarkable performance of this approach in different species of sponges, in different biogeographic regions and across the whole animal kingdom, illustrates the vast potential of natural samplers as high-resolution biomonitoring solutions for highly diverse and vulnerable deep-sea ecosystems.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Poríferos , Poríferos/genética , Poríferos/clasificación , Animales , Código de Barras del ADN Taxonómico/métodos , Océano Atlántico , ADN Ambiental/análisis , Ecosistema
2.
Sci Rep ; 10(1): 13938, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811877

RESUMEN

Coralligenous assemblages are among the most species-rich and vulnerable habitats of the Mediterranean Sea. Nevertheless, data on connectivity patterns on species inhabiting these habitats, crucial to define management and protection priorities, are largely lacking. Moreover, unreliable species-level taxonomy can confound ecological studies and mislead management strategies. In the northwestern Mediterranean two Parazoanthus axinellae morphotypes differing in size, color and preferred substrate are found in sympatry. In this study, we used COI and ITS sequence polymorphism to assess (1) the genetic divergence between the two morphotypes, (2) their connectivity patterns and (3) their phylogenetic position within the Parazoanthidae. Specimens of P. axinellae were sampled in 11 locations along the northwestern Mediterranean; in 6 locations, samples of the two morphotypes were collected in sympatry. Small genetic diversity and structure were found within morphotypes, while marked and consistent differentiation was detected between them. Moreover, the less widespread morphotype appeared to be closer to Pacific species as P. juanfernandezii and P. elongatus. Our findings confirmed the limited knowledge on Parazoanthus species complex, and how this gap can have important implication for the conservation strategies of this widespread and valuable genus in the Mediterranean Sea.


Asunto(s)
Anémonas de Mar/genética , Animales , Antozoos/genética , Biodiversidad , Ecosistema , Variación Genética/genética , Genética de Población/métodos , Región Mediterránea , Mar Mediterráneo , Filogenia , Aislamiento Reproductivo
3.
Adv Mar Biol ; 79: 61-136, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30012277

RESUMEN

Marine bioconstructions are biodiversity-rich, three-dimensional biogenic structures, regulating key ecological functions of benthic ecosystems worldwide. Tropical coral reefs are outstanding for their beauty, diversity and complexity, but analogous types of bioconstructions are also present in temperate seas. The main bioconstructions in the Mediterranean Sea are represented by coralligenous formations, vermetid reefs, deep-sea cold-water corals, Lithophyllum byssoides trottoirs, coral banks formed by the shallow-water corals Cladocora caespitosa or Astroides calycularis, and sabellariid or serpulid worm reefs. Bioconstructions change the morphological and chemicophysical features of primary substrates and create new habitats for a large variety of organisms, playing pivotal roles in ecosystem functioning. In spite of their importance, Mediterranean bioconstructions have not received the same attention that tropical coral reefs have, and the knowledge of their biology, ecology and distribution is still fragmentary. All existing data about the spatial distribution of Italian bioconstructions have been collected, together with information about their growth patterns, dynamics and connectivity. The degradation of these habitats as a consequence of anthropogenic pressures (pollution, organic enrichment, fishery, coastal development, direct physical disturbance), climate change and the spread of invasive species was also investigated. The study of bioconstructions requires a holistic approach leading to a better understanding of their ecology and the application of more insightful management and conservation measures at basin scale, within ecologically coherent units based on connectivity: the cells of ecosystem functioning.


Asunto(s)
Biodiversidad , Arrecifes de Coral , Monitoreo del Ambiente , Animales , Conservación de los Recursos Naturales , Italia , Mar Mediterráneo
4.
Mar Genomics ; 25: 43-48, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26711352

RESUMEN

Global population genetic structure of yellowfin tuna (Thunnus albacares) is still poorly understood despite its relevance for the tuna fishery industry. Low levels of genetic differentiation among oceans speak in favour of the existence of a single panmictic population worldwide of this highly migratory fish. However, recent studies indicated genetic structuring at a much smaller geographic scales than previously considered, pointing out that YFT population genetic structure has not been properly assessed so far. In this study, we demonstrated for the first time, the utility of 2b-RAD genotyping technique for investigating population genetic diversity and differentiation in high gene-flow species. Running de novo pipeline in Stacks, a total of 6772 high-quality genome-wide SNPs were identified across Atlantic, Indian and Pacific population samples representing all major distribution areas. Preliminary analyses showed shallow but significant population structure among oceans (FST=0.0273; P-value<0.01). Discriminant Analysis of Principal Components endorsed the presence of genetically discrete yellowfin tuna populations among three oceanic pools. Although such evidence needs to be corroborated by increasing sample size, these results showed the efficiency of this genotyping technique in assessing genetic divergence in a marine fish with high dispersal potential.


Asunto(s)
Genotipo , Técnicas de Genotipaje/veterinaria , Atún/genética , Distribución Animal , Animales , Secuencia de Bases , ADN/genética , Océanos y Mares , Programas Informáticos , Especificidad de la Especie , Atún/fisiología
5.
PLoS One ; 9(7): e101135, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24983738

RESUMEN

Biogeography investigates spatial patterns of species distribution. Discontinuities in species distribution are identified as boundaries between biogeographic areas. Do these boundaries affect genetic connectivity? To address this question, a multifactorial hierarchical sampling design, across three of the major marine biogeographic boundaries in the central Mediterranean Sea (Ligurian-Tyrrhenian, Tyrrhenian-Ionian and Ionian-Adriatic) was carried out. Mitochondrial COI sequence polymorphism of seven species of Mediterranean benthic invertebrates was analysed. Two species showed significant genetic structure across the Tyrrhenian-Ionian boundary, as well as two other species across the Ionian Sea, a previously unknown phylogeographic barrier. The hypothesized barrier in the Ligurian-Tyrrhenian cannot be detected in the genetic structure of the investigated species. Connectivity patterns across species at distances up to 800 km apart confirmed that estimates of pelagic larval dispersal were poor predictors of the genetic structure. The detected genetic discontinuities seem more related to the effect of past historical events, though maintained by present day oceanographic processes. Multivariate statistical tools were used to test the consistency of the patterns across species, providing a conceptual framework for across-species barrier locations and strengths. Additional sequences retrieved from public databases supported our findings. Heterogeneity of phylogeographic patterns shown by the 7 investigated species is relevant to the understanding of the genetic diversity, and carry implications for conservation biology.


Asunto(s)
Geografía , Invertebrados/genética , Biología Marina , Animales , Biodiversidad , Mar Mediterráneo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA