Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunity ; 54(8): 1807-1824.e14, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380064

RESUMEN

The transcription factor forkhead box O1 (FOXO1), which instructs the dark zone program to direct germinal center (GC) polarity, is typically inactivated by phosphatidylinositol 3-kinase (PI3K) signals. Here, we investigated how FOXO1 mutations targeting this regulatory axis in GC-derived B cell non-Hodgkin lymphomas (B-NHLs) contribute to lymphomagenesis. Examination of primary B-NHL tissues revealed that FOXO1 mutations and PI3K pathway activity were not directly correlated. Human B cell lines bearing FOXO1 mutations exhibited hyperactivation of PI3K and Stress-activated protein kinase (SAPK)/Jun amino-terminal kinase (JNK) signaling, and increased cell survival under stress conditions as a result of alterations in FOXO1 transcriptional affinities and activation of transcriptional programs characteristic of GC-positive selection. When modeled in mice, FOXO1 mutations conferred competitive advantage to B cells in response to key T-dependent immune signals, disrupting GC homeostasis. FOXO1 mutant transcriptional signatures were prevalent in human B-NHL and predicted poor clinical outcomes. Thus, rather than enforcing FOXO1 constitutive activity, FOXO1 mutations enable co-option of GC-positive selection programs during the pathogenesis of GC-derived lymphomas.


Asunto(s)
Linfocitos B/citología , Proteína Forkhead Box O1/genética , Centro Germinal/inmunología , Linfoma de Células B/patología , Animales , Linfocitos B/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Línea Celular , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Linfoma de Células B/genética , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología
2.
Mol Cell Biol ; 36(6): 923-40, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26711268

RESUMEN

Notch activation in aortic endothelial cells (ECs) takes place at embryonic stages during cardiac valve formation and induces endothelial-to-mesenchymal transition (EndMT). Using aortic ECs, we show here that active Notch expression promotes EndMT, resulting in downregulation of vascular endothelial cadherin (VE-cadherin) and upregulation of mesenchymal genes such as those for fibronectin and Snail1/2. In these cells, transforming growth factor ß1 exacerbates Notch effects by increasing Snail1 and fibronectin activation. When Notch-downstream pathways were analyzed, we detected an increase in glycogen synthase kinase 3ß (GSK-3ß) phosphorylation and inactivation that facilitates Snail1 nuclear retention and protein stabilization. However, the total activity of Akt was downregulated. The discrepancy between Akt activity and GSK-3ß phosphorylation is explained by a Notch-induced switch in the Akt isoforms, whereby Akt1, the predominant isoform expressed in ECs, is decreased and Akt2 transcription is upregulated. Mechanistically, Akt2 induction requires the stimulation of the ß-catenin/TCF4 transcriptional complex, which activates the Akt2 promoter. Active, phosphorylated Akt2 translocates to the nucleus in Notch-expressing cells, resulting in GSK-3ß inactivation in this compartment. Akt2, but not Akt1, colocalizes in the nucleus with lamin B in the nuclear envelope. In addition to promoting GSK-3ß inactivation, Notch downregulates Forkhead box O1 (FoxO1), another Akt2 nuclear substrate. Moreover, Notch protects ECs from oxidative stress-induced apoptosis through an Akt2- and Snail1-dependent mechanism.


Asunto(s)
Muerte Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción/genética , Animales , Aorta/citología , Línea Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Ratones , Estrés Oxidativo , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/análisis , Proteínas Proto-Oncogénicas c-akt/genética , Factores de Transcripción de la Familia Snail , Porcinos , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo , Regulación hacia Arriba , beta Catenina/metabolismo
3.
Mol Cell Proteomics ; 14(2): 303-15, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25505127

RESUMEN

Adipogenesis requires a differentiation program driven by multiple transcription factors, where PPARγ and C/EBPα play a central role. Recent findings indicate that Snail inhibits adipocyte differentiation in 3T3-L1 and murine mesenchymal stem cells (mMSC). An in-depth quantitative SILAC analysis of the nuclear fraction of Snail-induced alterations of 3T3-L1 cells was carried out. In total, 2251 overlapping proteins were simultaneously quantified in forward and reverse experiments. We observed 574 proteins deregulated by Snail1 using a fold-change ≥1.5, with 111 up- and 463 down-regulated proteins, respectively. Among other proteins, multiple transcription factors such as Trip4, OsmR, Nr2f6, Cbx6, and Prrx1 were down-regulated. Results were validated in 3T3-L1 cells and mMSC cells by Western blot and quantitative PCR. Knock-down experiments in 3T3-L1 cells demonstrated that only Nr2f6 (and Trip4 at minor extent) was required for adipocyte differentiation. Ectopic expression of Nr2f6 reversed the effects of Snail1 and promoted adipogenesis. Because Nr2f6 inhibits the expression of IL-17, we tested the effect of Snail on IL-17 expression. IL-17 and TNFα were among the most up-regulated pro-inflammatory cytokines in Snail-transfected 3T3-L1 and mMSC cells. Furthermore, the blocking of IL-17 activity in Snail-transfected cells promoted adipocyte differentiation, reverting Snail inhibition. In summary, Snail inhibits adipogenesis through a down-regulation of Nr2f6, which in turn facilitates the expression of IL-17, an anti-adipogenic cytokine. These results would support a novel and important role for Snail and Nr2f6 in obesity control.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Factores de Transcripción COUP/metabolismo , Diferenciación Celular , Interleucina-17/metabolismo , Proteómica/métodos , Factores de Transcripción/metabolismo , Células 3T3-L1 , Adipogénesis , Animales , Extractos Celulares , Núcleo Celular/metabolismo , Regulación hacia Abajo , Células Madre Mesenquimatosas/metabolismo , Ratones , Modelos Biológicos , Proteínas Represoras , Reproducibilidad de los Resultados , Transducción de Señal , Factores de Transcripción de la Familia Snail , Transfección
4.
Mol Cell ; 53(3): 444-57, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24412065

RESUMEN

The Wnt canonical ligands elicit the activation of ß-catenin transcriptional activity, a response dependent on, but not limited to, ß-catenin stabilization through the inhibition of GSK3 activity. Two mechanisms have been proposed for this inhibition, one dependent on the binding and subsequent block of GSK3 to LRP5/6 Wnt coreceptor and another one on its sequestration into multivesicular bodies (MVBs). Here we report that internalization of the GSK3-containing Wnt-signalosome complex into MVBs is dependent on the dissociation of p120-catenin/cadherin from this complex. Disruption of cadherin-LRP5/6 interaction is controlled by cadherin phosphorylation and requires the previous separation of p120-catenin; thus, p120-catenin and cadherin mutants unable to dissociate from the complex block GSK3 sequestration into MVBs. These mutants substantially inhibit, but do not completely prevent, the ß-catenin upregulation caused by Wnt3a. These results, besides elucidating how GSK3 is sequestered into MVBs, support this mechanism as cause of ß-catenin stabilization by Wnt.


Asunto(s)
Cadherinas/fisiología , Cateninas/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Cuerpos Multivesiculares/metabolismo , Vía de Señalización Wnt , Animales , Cadherinas/metabolismo , Cateninas/metabolismo , Caveolinas/metabolismo , Células HEK293 , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/análisis , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/análisis , Ratones , Fosforilación , Proteína Wnt3A/metabolismo , Proteína Wnt3A/fisiología , Catenina delta
5.
Nucleic Acids Res ; 42(2): 1079-94, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24157836

RESUMEN

The zinc finger transcription factor Snail1 regulates epithelial to mesenchymal transition, repressing epithelial markers and activating mesenchymal genes. Snail1 is an extremely labile protein degraded by the cytoplasmic ubiquitin-ligases ß-TrCP1/FBXW1 and Ppa/FBXL14. Using a short hairpin RNA screening, we have identified FBXL5 as a novel Snail1 ubiquitin ligase. FBXL5 is located in the nucleus where it interacts with Snail1 promoting its polyubiquitination and affecting Snail1 protein stability and function by impairing DNA binding. Snail1 downregulation by FBXL5 is prevented by Lats2, a protein kinase that phosphorylates Snail1 precluding its nuclear export but not its polyubiquitination. Actually, although polyubiquitination by FBXL5 takes place in the nucleus, Snail1 is degraded in the cytosol. Finally, FBXL5 is highly sensitive to stress conditions and is downregulated by iron depletion and γ-irradiation, explaining Snail1 stabilization in these conditions. These results characterize a novel nuclear ubiquitin ligase controlling Snail1 protein stability and provide the molecular basis for understanding how radiotherapy upregulates the epithelial to mesenchymal transition-inducer Snail1.


Asunto(s)
Núcleo Celular/enzimología , Proteínas F-Box/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Línea Celular Tumoral , Núcleo Celular/metabolismo , ADN/metabolismo , Rayos gamma , Humanos , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , ARN Interferente Pequeño , Factores de Transcripción de la Familia Snail , Complejos de Ubiquitina-Proteína Ligasa
6.
J Biol Chem ; 285(6): 3794-3805, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19955572

RESUMEN

The transcription factor SNAIL1 is a master regulator of epithelial to mesenchymal transition. SNAIL1 is a very unstable protein, and its levels are regulated by the E3 ubiquitin ligase beta-TrCP1 that interacts with SNAIL1 upon its phosphorylation by GSK-3beta. Here we show that SNAIL1 polyubiquitylation and degradation may occur in conditions precluding SNAIL1 phosphorylation by GSK-3beta, suggesting that additional E3 ligases participate in the control of SNAIL1 protein stability. In particular, we demonstrate that the F-box E3 ubiquitin ligase FBXl14 interacts with SNAIL1 and promotes its ubiquitylation and proteasome degradation independently of phosphorylation by GSK-3beta. In vivo, inhibition of FBXl14 using short hairpin RNA stabilizes both ectopically expressed and endogenous SNAIL1. Moreover, the expression of FBXl14 is potently down-regulated during hypoxia, a condition that increases the levels of SNAIL1 protein but not SNAIL1 mRNA. FBXL14 mRNA is decreased in tumors with a high expression of two proteins up-regulated in hypoxia, carbonic anhydrase 9 and TWIST1. In addition, Twist1 small interfering RNA prevents hypoxia-induced Fbxl14 down-regulation and SNAIL1 stabilization in NMuMG cells. Altogether, these results demonstrate the existence of an alternative mechanism controlling SNAIL1 protein levels relevant for the induction of SNAIL1 during hypoxia.


Asunto(s)
Proteínas F-Box/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión , Western Blotting , Hipoxia de la Célula , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo , Proteínas F-Box/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Inmunoprecipitación , Ratones , Mutación , Células 3T3 NIH , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Interferencia de ARN , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Transfección , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
7.
Bioconjug Chem ; 20(12): 2262-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19916547

RESUMEN

Control of gene expression via small interfering RNA has enormous potential for the treatment of a variety of diseases, including cancer and Huntington's disease. However, before any therapies can be developed, effective techniques for controlled delivery of these molecules must be devised. In this proof-of-concept study, small interfering RNA was complexed with a polymer and loaded into a biomaterial scaffold. The scaffold was introduced primarily to control the release of the complexes, and the polymer was introduced to improve the transfection efficiency. An optimal dose and complexation ratio were selected, at which more than 50% down-regulation of the target gene Snail1 was observed in two-dimensional culture. Delayed release of the complexes was observed, and significant sustained down-regulation of Snail1 was seen in a three-dimensional scaffold system after 7 days. Thus, the use of the scaffold altered the transfection profile significantly, demonstrating the feasibility of a collagen scaffold as a controlled release system for delivery of small interfering RNA-dendrimer complexes.


Asunto(s)
Colágeno/química , Regulación hacia Abajo/efectos de los fármacos , Portadores de Fármacos/química , ARN Interferente Pequeño/farmacología , Factores de Transcripción/metabolismo , Animales , Dendrímeros/química , Drosophila , Sistemas de Liberación de Medicamentos , Ratones , Conformación Molecular , Células 3T3 NIH , Tamaño de la Partícula , ARN Interferente Pequeño/química , Factores de Transcripción de la Familia Snail , Propiedades de Superficie , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...