Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Rep ; 12(1): 20110, 2022 11 22.
Article En | MEDLINE | ID: mdl-36418412

Fostering a culture of continuous improvement through regular monitoring of genetic trends in breeding pipelines is essential to improve efficiency and increase accountability. This is the first global study to estimate genetic trends across the International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding pipelines in eastern and southern Africa (ESA), South Asia, and Latin America over the past decade. Data from a total of 4152 advanced breeding trials and 34,813 entries, conducted at 1331 locations in 28 countries globally, were used for this study. Genetic trends for grain yield reached up to 138 kg ha-1 yr-1 in ESA, 118 kg ha-1 yr-1 South Asia and 143 kg ha-1 yr-1 in Latin America. Genetic trend was, in part, related to the extent of deployment of new breeding tools in each pipeline, strength of an extensive phenotyping network, and funding stability. Over the past decade, CIMMYT's breeding pipelines have significantly evolved, incorporating new tools/technologies to increase selection accuracy and intensity, while reducing cycle time. The first pipeline, Eastern Africa Product Profile 1a (EA-PP1a), to implement marker-assisted forward-breeding for resistance to key diseases, coupled with rapid-cycle genomic selection for drought, recorded a genetic trend of 2.46% per year highlighting the potential for deploying new tools/technologies to increase genetic gain.


Plant Breeding , Zea mays , Zea mays/genetics , Triticum , Droughts , Edible Grain/genetics
2.
3 Biotech ; 11(5): 244, 2021 May.
Article En | MEDLINE | ID: mdl-33968587

Genome-wide association study (GWAS) provides a robust and potent tool to retrieve complex phenotypic traits back to their underlying genetics. Maize is an excellent crop for performing GWAS due to diverse genetic variability, rapid decay of linkage disequilibrium, availability of distinct sub-populations and abundant SNP information. The application of GWAS in maize has resulted in successful identification of thousands of genomic regions associated with many abiotic and biotic stresses. Many agronomic and quality traits of maize are severely affected by such stresses and, significantly affecting its growth and productivity. To improve productivity of maize crop in countries like India which contribute only 2% to the world's total production in 2019-2020, it is essential to understand genetic complexity of underlying traits. Various DNA markers and trait associations have been revealed using conventional linkage mapping methods. However, it has achieved limited success in improving polygenic complex traits due to lower resolution of trait mapping. The present review explores the prospects of GWAS in improving yield, quality and stress tolerance in maize besides, strengths and challenges of using GWAS for molecular breeding and genomic selection. The information gathered will facilitate elucidation of genetic mechanisms of complex traits and improve efficiency of marker-assisted selection in maize breeding. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02799-4.

3.
Theor Appl Genet ; 134(6): 1729-1752, 2021 Jun.
Article En | MEDLINE | ID: mdl-33594449

KEY MESSAGE: Intensive public sector breeding efforts and public-private partnerships have led to the increase in genetic gains, and deployment of elite climate-resilient maize cultivars for the stress-prone environments in the tropics. Maize (Zea mays L.) plays a critical role in ensuring food and nutritional security, and livelihoods of millions of resource-constrained smallholders. However, maize yields in the tropical rainfed environments are now increasingly vulnerable to various climate-induced stresses, especially drought, heat, waterlogging, salinity, cold, diseases, and insect pests, which often come in combinations to severely impact maize crops. The International Maize and Wheat Improvement Center (CIMMYT), in partnership with several public and private sector institutions, has been intensively engaged over the last four decades in breeding elite tropical maize germplasm with tolerance to key abiotic and biotic stresses, using an extensive managed stress screening network and on-farm testing system. This has led to the successful development and deployment of an array of elite stress-tolerant maize cultivars across sub-Saharan Africa, Asia, and Latin America. Further increasing genetic gains in the tropical maize breeding programs demands judicious integration of doubled haploidy, high-throughput and precise phenotyping, genomics-assisted breeding, breeding data management, and more effective decision support tools. Multi-institutional efforts, especially public-private alliances, are key to ensure that the improved maize varieties effectively reach the climate-vulnerable farming communities in the tropics, including accelerated replacement of old/obsolete varieties.


Climate Change , Plant Breeding , Zea mays/genetics , Cold Temperature , Crops, Agricultural/genetics , Disease Resistance , Droughts , Floods , Haploidy , Hot Temperature , Phenotype , Stress, Physiological , Tropical Climate
4.
Sci Rep ; 11(1): 686, 2021 01 12.
Article En | MEDLINE | ID: mdl-33436870

Maize is rapidly replacing traditionally cultivated dual purpose crops of South Asia, primarily due to the better economic remuneration. This has created an impetus for improving maize for both grain productivity and stover traits. Molecular techniques can largely assist breeders in determining approaches for effectively integrating stover trait improvement in their existing breeding pipeline. In the current study we identified a suite of potential genomic regions associated to the two major stover quality traits-in-vitro organic matter digestibility (IVOMD) and metabolizable energy (ME) through genome wide association study. However, considering the fact that the loci identified for these complex traits all had smaller effects and accounted only a small portion of phenotypic variation, the effectiveness of following a genomic selection approach for these traits was evaluated. The testing set consists of breeding lines recently developed within the program and the training set consists of a panel of lines from the working germplasm comprising the founder lines of the newly developed breeding lines and also an unrelated diversity set. The prediction accuracy as determined by the Pearson's correlation coefficient between observed and predicted values of these breeding lines were high even at lower marker density (200 random SNPs), when the training and testing set were related. However, the accuracies were dismal, when there was no relationship between the training and the testing set.


Genome, Plant , Genome-Wide Association Study , Genomics/methods , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Genotype , Plant Breeding
5.
Plant Genome ; 13(3): e20035, 2020 11.
Article En | MEDLINE | ID: mdl-33217198

Rapid cycle genomic selection (RC-GS) helps to shorten the breeding cycle and reduce the costs of phenotyping, thereby increasing genetic gains in terms of both cost and time. We implemented RC-GS on two multi-parent yellow synthetic (MYS) populations constituted by intermating ten elite lines involved in each population, including four each of drought and waterlogging tolerant donors and two commercial lines, with proven commercial value. Cycle 1 (C1 ) was constituted based on phenotypic selection and intermating of the top 5% of 500 S2 families derived from each MYS population, test-crossed and evaluated across moisture regimes. C1 was advanced to the next two cycles (C2 and C3 ) by intermating the top 5% selected individuals with high genomic estimated breeding values (GEBVs) for grain yield under drought and waterlogging stress. To estimate genetic gains, population bulks from each cycle were test-crossed and evaluated across locations under different moisture regimes. Results indicated that the realised genetic gain under drought stress was 0.110 t ha-1 yr-1 and 0.135 t ha-1 yr-1 , respectively, for MYS-1 and MYS-2. The gain was less under waterlogging stress, where MYS-1 showed 0.038 t ha-1 yr-1 and MYS-2 reached 0.113 t ha-1 yr-1 . Genomic selection for drought and waterlogging tolerance resulted in no yield penalty under optimal moisture conditions. The genetic diversity of the two populations did not change significantly after two cycles of GS, suggesting that RC-GS can be an effective breeding strategy to achieve high genetic gains without losing genetic diversity.


Droughts , Zea mays , Genome, Plant , Genomics , Selection, Genetic , Zea mays/genetics
6.
PLoS One ; 11(10): e0164340, 2016.
Article En | MEDLINE | ID: mdl-27768702

An association mapping panel, named as CIMMYT Asia association mapping (CAAM) panel, involving 396 diverse tropical maize lines were phenotyped for various structural and functional traits of roots under drought and well-watered conditions. The experiment was conducted during Kharif (summer-rainy) season of 2012 and 2013 in root phenotyping facility at CIMMYT-Hyderabad, India. The CAAM panel was genotyped to generate 955, 690 SNPs through GBS v2.7 using Illumina Hi-seq 2000/2500 at Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA. GWAS analysis was carried out using 331,390 SNPs filtered from the entire set of SNPs revealed a total of 50 and 67 SNPs significantly associated for root functional (transpiration efficiency, flowering period water use) and structural traits (rooting depth, root dry weight, root length, root volume, root surface area and root length density), respectively. In addition to this, 37 SNPs were identified for grain yield and shoot biomass under well-watered and drought stress. Though many SNPs were found to have significant association with the traits under study, SNPs that were common for more than one trait were discussed in detail. A total 18 SNPs were found to have common association with more than one trait, out of which 12 SNPs were found within or near the various gene functional regions. In this study we attempted to identify the trait specific maize lines based on the presence of favorable alleles for the SNPs associated with multiple traits. Two SNPs S3_128533512 and S7_151238865 were associated with transpiration efficiency, shoot biomass and grain yield under well-watered condition. Based on favorable allele for these SNPs seven inbred lines were identified. Similarly, four lines were identified for transpiration efficiency and shoot biomass under drought stress based on the presence of favorable allele for the common SNPs S1_211520521, S2_20017716, S3_57210184 and S7_130878458 and three lines were identified for flowering period water-use, transpiration efficiency, root dry weight and root volume based on the presence of favorable allele for the common SNPs S3_162065732 and S3_225760139.


Droughts , Genome, Plant , Plant Roots/physiology , Stress, Physiological , Tropical Climate , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide
...