Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Europace ; 23(23 Suppl 1): i88-i95, 2021 03 04.
Article En | MEDLINE | ID: mdl-33751079

AIMS: Ventricular activation patterns can aid clinical decision-making directly by providing spatial information on cardiac electrical activation or indirectly through derived clinical indices. The aim of this work was to derive an atlas of the major modes of variation of ventricular activation from model-predicted 3D bi-ventricular activation time distributions and to relate these modes to corresponding vectorcardiograms (VCGs). We investigated how the resulting dimensionality reduction can improve and accelerate the estimation of activation patterns from surface electrogram measurements. METHODS AND RESULTS: Atlases of activation time (AT) and VCGs were derived using principal component analysis on a dataset of simulated electrophysiology simulations computed on eight patient-specific bi-ventricular geometries. The atlases provided significant dimensionality reduction, and the modes of variation in the two atlases described similar features. Utility of the atlases was assessed by resolving clinical waveforms against them and the VCG atlas was able to accurately reconstruct the patient VCGs with fewer than 10 modes. A sensitivity analysis between the two atlases was performed by calculating a compact Jacobian. Finally, VCGs generated by varying AT atlas modes were compared with clinical VCGs to estimate patient-specific activation maps, and the resulting errors between the clinical and atlas-based VCGs were less than those from more computationally expensive method. CONCLUSION: Atlases of activation and VCGs represent a new method of identifying and relating the features of these high-dimensional signals that capture the major sources of variation between patients and may aid in identifying novel clinical indices of arrhythmia risk or therapeutic outcome.


Arrhythmias, Cardiac , Heart , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging
2.
Circ Arrhythm Electrophysiol ; 13(8): e008253, 2020 08.
Article En | MEDLINE | ID: mdl-32634327

BACKGROUND: Normative ECG values for children are based on relatively few subjects and are not standardized, resulting in interpersonal variability of interpretation. Recent advances in digital technology allow a more quantitative, reproducible assessment of ECG variables. Our objective was to create the foundation of normative ECG standards in the young utilizing Z-scores. METHODS: One hundred two ECG variables were collected from a retrospective cohort of 27 085 study subjects with no known heart condition, ages 0 to 39 years. The cohort was divided into 16 age groups by sex. Median, interquartile range, and range were calculated for each variable adjusted to body surface area. RESULTS: Normative standards were developed for all 102 ECG variables including heart rate; P, R, and T axis; R-T axis deviation; PR interval, QRS duration, QT, and QTc interval; P, Q, R, S, and T amplitudes in 12 leads; as well as QRS and T wave integrals. Incremental Z-score values between -2.5 and 2.5 were calculated to establish upper and lower limits of normal. Historical ECG interpretative concepts were reassessed and new concepts observed. CONCLUSIONS: Electronically acquired ECG values based on the largest pediatric and young adult cohort ever compiled provide the first detailed, standardized, quantitative foundation of traditional and novel ECG variables. Expression of ECG variables by Z-scores lends an objective and reproducible evaluation without interpreter bias that can lead to more confident establishment of ECG-disease correlations and improved automated ECG readings in high-volume cardiac screening efforts in the young. Graphic Abstract: A graphic abstract is available for this article.


Action Potentials , Electrocardiography/standards , Heart Conduction System/physiology , Heart Rate , Adolescent , Adult , Age Factors , Body Surface Area , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Predictive Value of Tests , Reference Values , Retrospective Studies , Young Adult
3.
Circ Res ; 127(2): 284-297, 2020 07 03.
Article En | MEDLINE | ID: mdl-32345129

RATIONALE: ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE: To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS: We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS: ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.


Atrioventricular Block/metabolism , Atrioventricular Node/metabolism , Ventricular Function , Zonula Occludens-1 Protein/metabolism , Animals , Atrioventricular Block/physiopathology , Atrioventricular Node/physiology , Cadherins/genetics , Cadherins/metabolism , Connexins/genetics , Connexins/metabolism , Male , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Vinculin/genetics , Vinculin/metabolism , Zonula Occludens-1 Protein/genetics , alpha Catenin/genetics , alpha Catenin/metabolism
4.
J Physiol ; 597(6): 1531-1551, 2019 03.
Article En | MEDLINE | ID: mdl-30588629

KEY POINTS: Mutations in the caveolae scaffolding protein, caveolin-3 (Cav3), have been linked to the long QT type 9 inherited arrhythmia syndrome (LQT9) and the cause of underlying action potential duration prolongation is incompletely understood. In the present study, we show that LQT9 Cav3 mutations, F97C and S141R, cause mutation-specific gain of function effects on Cav 1.2-encoded L-type Ca2+ channels responsible for ICa,L and also cause loss of function effects on heterologously expressed Kv 4.2 and Kv 4.3 channels responsible for Ito . A computational model of the human ventricular myocyte action potential suggests that the major ionic current change causing action potential duration prolongation in the presence of Cav3-F97C is the slowly inactivating ICa,L but, for Cav3-S141R, both increased ICa,L and increased late Na+ current contribute equally to action potential duration prolongation. Overall, the LQT9 Cav3-F97C and Cav3-S141R mutations differentially impact multiple ionic currents, highlighting the complexity of Cav3 regulation of cardiac excitability and suggesting mutation-specific therapeutic approaches. ABSTRACT: Mutations in the CAV3 gene encoding caveolin-3 (Cav3), a scaffolding protein integral to caveolae in cardiomyocytes, have been associated with the congenital long-QT syndrome (LQT9). Initial studies demonstrated that LQT9-associated Cav3 mutations, F97C and S141R, increase late sodium current as a potential mechanism to prolong action potential duration (APD) and cause LQT9. Whether these Cav3 LQT9 mutations impact other caveolae related ion channels remains unknown. We used the whole-cell, patch clamp technique to characterize the effect of Cav3-F97C and Cav3-S141R mutations on heterologously expressed Cav 1.2+Cav ß2cN4 channels, as well as Kv 4.2 and Kv 4.3 channels, in HEK 293 cells. Expression of Cav3-S141R increased ICa,L density without changes in gating properties, whereas expression of Cav3-F97C reduced Ca2+ -dependent inactivation of ICa,L without changing current density. The Cav3-F97C mutation reduced current density and altered the kinetics of IKv4.2 and IKv4.3 and also slowed recovery from inactivation. Cav3-S141R decreased current density and also slowed activation kinetics and recovery from inactivation of IKv4.2 but had no effect on IKv4.3 . Using the O'Hara-Rudy computational model of the human ventricular myocyte action potential, the Cav3 mutation-induced changes in Ito are predicted to have negligible effect on APD, whereas blunted Ca2+ -dependent inactivation of ICa,L by Cav3-F97C is predicted to be primarily responsible for APD prolongation, although increased ICa,L and late INa by Cav3-S141R contribute equally to APD prolongation. Thus, LQT9 Cav3-associated mutations, F97C and S141R, produce mutation-specific changes in multiple ionic currents leading to different primary causes of APD prolongation, which suggests the use of mutation-specific therapeutic approaches in the future.


Action Potentials , Calcium Channels, L-Type/metabolism , Caveolin 3/genetics , Long QT Syndrome/genetics , Models, Cardiovascular , Mutation, Missense , Shal Potassium Channels/metabolism , HEK293 Cells , Humans , Long QT Syndrome/physiopathology
5.
PLoS One ; 13(11): e0207100, 2018.
Article En | MEDLINE | ID: mdl-30399185

AIMS: Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) predisposes to ventricular tachyarrhythmias (VTs) during high heart rates due to physical or psychological stress. The essential role of catecholaminergic effects on ventricular cardiomyocytes in this situation is well documented, but the importance of heart rate per se for arrhythmia initiation in CPVT1 is largely unexplored. METHODS AND RESULTS: Sixteen CPVT1 patients performed a bicycle stress-test. Occurrence of VT triggers, i.e. premature ventricular complexes (PVC), depended on high heart rate, with individual thresholds. Atrial pacing above the individual PVC threshold in three patients did not induce PVCs. The underlying mechanism for the clinical observation was explored using cardiomyocytes from mice with the RyR2-R2474S (RyR2-RS) mutation, which exhibit exercise-induced VTs. While rapid pacing increased the number of Ca2+ waves in both RyR2-RS and wild-type (p<0.05), ß-adrenoceptor (ßAR) stimulation induced more Ca2+ waves in RyR2-RS (p<0.05). Notably, Ca2+ waves occurred despite decreased sarcoplasmic reticulum (SR) Ca2+ content in RyR2-RS (p<0.05), suggesting increased cytosolic RyR2 Ca2+ sensitivity. A computational model of mouse ventricular cardiomyocyte electrophysiology reproduced the cellular CPVT1 phenotype when RyR2 Ca2+ sensitivity was increased. Importantly, diastolic fluctuations in phosphorylation of RyR2 and SR Ca2+ content determined Ca2+ wave initiation. These factors were modulated towards increased propensity for arrhythmia initiation by increased pacing rates, but even more by ßAR stimulation. CONCLUSION: In CPVT1, VT propensity depends on individual heart rate thresholds for PVCs. Through converging data from clinical exercise stress-testing, cellular studies and computational modelling, we confirm the heart rate-independent pro-arrhythmic effects of ßAR stimulation in CPVT1, but also identify an independent and synergistic contribution from effects of high heart rate.


Heart Rate/physiology , Receptors, Adrenergic, beta/metabolism , Tachycardia, Ventricular/physiopathology , Adolescent , Adult , Aged , Animals , Bicycling/physiology , Calcium/metabolism , Cations, Divalent/metabolism , Computer Simulation , Disease Models, Animal , Female , Humans , Male , Mice, Transgenic , Middle Aged , Models, Cardiovascular , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Sympathetic Nervous System/physiopathology , Young Adult
6.
Biophys J ; 114(6): 1477-1489, 2018 03 27.
Article En | MEDLINE | ID: mdl-29590604

Computational models and experimental optical mapping of cardiac electrophysiology serve as powerful tools to investigate the underlying mechanisms of arrhythmias. Modeling can also aid the interpretation of optical mapping signals, which may have different characteristics with respect to the underlying electrophysiological signals they represent. However, despite the prevalence of atrial arrhythmias such as atrial fibrillation, models of optical electrical mapping incorporating realistic structure of the atria are lacking. Therefore, we developed image-based models of atrial tissue using structural information extracted from optical coherence tomography (OCT), which can provide volumetric tissue characteristics in high resolution. OCT volumetric data of four swine atrial tissue samples were used to develop models incorporating tissue geometry, tissue-specific myofiber orientation, and ablation lesion regions. We demonstrated the use of these models through electrophysiology and photon scattering simulations. Changes in transmural electrical conduction were observed with the inclusion of OCT-derived, depth-resolved fiber orientation. Additionally, the amplitude of optical mapping signals were not found to correspond with lesion transmurality because of lesion geometry and electrical propagation occurring beyond excitation light penetration. This work established a framework for the development of tissue-specific models of atrial tissue derived from OCT imaging data, which can be useful in future investigations of electrophysiology and optical mapping signals with respect to realistic atrial tissue structure.


Heart Atria/diagnostic imaging , Tomography, Optical Coherence , Voltage-Sensitive Dye Imaging/methods , Animals , Finite Element Analysis , Heart Atria/cytology , Monte Carlo Method , Organ Specificity , Swine
7.
Basic Res Cardiol ; 111(3): 28, 2016 May.
Article En | MEDLINE | ID: mdl-27023865

Caveolin-3 (Cav-3) plays a critical role in organizing signaling molecules and ion channels involved in cardiac conduction and metabolism. Mutations in Cav-3 are implicated in cardiac conduction abnormalities and myopathies. Additionally, cardiac-specific overexpression of Cav-3 (Cav-3 OE) is protective against ischemic and hypertensive injury, suggesting a potential role for Cav-3 in basal cardiac electrophysiology and metabolism involved in stress adaptation. We hypothesized that overexpression of Cav-3 may alter baseline cardiac conduction and metabolism. We examined: (1) ECG telemetry recordings at baseline and during pharmacological interventions, (2) ion channels involved in cardiac conduction with immunoblotting and computational modeling, and (3) baseline metabolism in Cav-3 OE and transgene-negative littermate control mice. Cav-3 OE mice had decreased heart rates, prolonged PR intervals, and shortened QTc intervals with no difference in activity compared to control mice. Dobutamine or propranolol did not cause significant changes between experimental groups in maximal (dobutamine) or minimal (propranolol) heart rate. Cav-3 OE mice had an overall lower chronotropic response to atropine. The expression of Kv1.4 and Kv4.3 channels, Nav1.5 channels, and connexin 43 were increased in Cav-3 OE mice. A computational model integrating the immunoblotting results indicated shortened action potential duration in Cav-3 OE mice linking the change in channel expression to the observed electrophysiology phenotype. Metabolic profiling showed no gross differences in VO2, VCO2, respiratory exchange ratio, heat generation, and feeding or drinking. In conclusion, Cav-3 OE mice have changes in ECG intervals, heart rates, and cardiac ion channel expression. These findings give novel mechanistic insights into previously reported Cav-3 dependent cardioprotection.


Caveolin 3/metabolism , Heart/physiology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Animals , Computer Simulation , Electrocardiography , Heart Rate/physiology , Immunoblotting , Mice , Mice, Inbred C57BL , Mice, Transgenic
8.
Mol Pharmacol ; 89(1): 176-86, 2016 Jan.
Article En | MEDLINE | ID: mdl-26494861

The molecular pharmacology of the G protein-coupled receptors for sphingosine 1-phosphate (S1P) provides important insight into established and new therapeutic targets. A new, potent bitopic S1P3 antagonist, SPM-354, with in vivo activity, has been used, together with S1P3-knockin and S1P3-knockout mice to define the spatial and functional properties of S1P3 in regulating cardiac conduction. We show that S1P3 is a key direct regulator of cardiac rhythm both in vivo and in isolated perfused hearts. 2-Amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol in vivo and S1P in isolated hearts induced a spectrum of cardiac effects, ranging from sinus bradycardia to complete heart block, as measured by a surface electrocardiogram in anesthetized mice and in volume-conducted Langendorff preparations. The agonist effects on complete heart block are absent in S1P3-knockout mice and are reversed in wild-type mice with SPM-354, as characterized and described here. Homologous knockin of S1P3-mCherry is fully functional pharmacologically and is strongly expressed by immunohistochemistry confocal microscopy in Hyperpolarization Activated Cyclic Nucleotide Gated Potassium Channel 4 (HCN4)-positive atrioventricular node and His-Purkinje fibers, with relative less expression in the HCN4-positive sinoatrial node. In Langendorff studies, at constant pressure, SPM-354 restored sinus rhythm in S1P-induced complete heart block and fully reversed S1P-mediated bradycardia. S1P3 distribution and function in the mouse ventricular cardiac conduction system suggest a direct mechanism for heart block risk that should be further studied in humans. A richer understanding of receptor and ligand usage in the pacemaker cells of the cardiac system is likely to be useful in understanding ventricular conduction in health, disease, and pharmacology.


Heart Block/drug therapy , Heart Block/genetics , Heart Rate/drug effects , Heart Rate/physiology , Receptors, Lysosphingolipid/antagonists & inhibitors , Receptors, Lysosphingolipid/genetics , Animals , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Heart Block/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Sphingosine-1-Phosphate Receptors
9.
Front Physiol ; 6: 217, 2015.
Article En | MEDLINE | ID: mdl-26300783

Computational modeling of tissue-scale cardiac electrophysiology requires numerically converged solutions to avoid spurious artifacts. The steep gradients inherent to cardiac action potential propagation necessitate fine spatial scales and therefore a substantial computational burden. The use of high-order interpolation methods has previously been proposed for these simulations due to their theoretical convergence advantage. In this study, we compare the convergence behavior of linear Lagrange, cubic Hermite, and the newly proposed cubic Hermite-style serendipity interpolation methods for finite element simulations of the cardiac monodomain equation. The high-order methods reach converged solutions with fewer degrees of freedom and longer element edge lengths than traditional linear elements. Additionally, we propose a dimensionless number, the cell Thiele modulus, as a more useful metric for determining solution convergence than element size alone. Finally, we use the cell Thiele modulus to examine convergence criteria for obtaining clinically useful activation patterns for applications such as patient-specific modeling where the total activation time is known a priori.

10.
Europace ; 16 Suppl 4: iv3-iv10, 2014 Nov.
Article En | MEDLINE | ID: mdl-25362167

AIMS: The aim of this study was to investigate structural contributions to the maintenance of rotors in human atrial fibrillation (AF) and possible mechanisms of termination. METHODS AND RESULTS: A three-dimensional human biatrial finite element model based on patient-derived computed tomography and arrhythmia observed at electrophysiology study was used to study AF. With normal physiological electrical conductivity and effective refractory periods (ERPs), wave break failed to sustain reentrant activity or electrical rotors. With depressed excitability, decreased conduction anisotropy, and shorter ERP characteristic of AF, reentrant rotors were readily maintained. Rotors were transiently or permanently trapped by fibre discontinuities on the lateral wall of the right atrium near the tricuspid valve orifice and adjacent to the crista terminalis, both known sites of right atrial arrhythmias. Modelling inexcitable regions near the rotor tip to simulate fibrosis anchored the rotors, converting the arrhythmia to macro-reentry. Accordingly, increasing the spatial core of inexcitable tissue decreased the frequency of rotation, widened the excitable gap, and enabled an external wave to impinge on the rotor core and displace the source. CONCLUSION: These model findings highlight the importance of structural features in rotor dynamics and suggest that regions of fibrosis may anchor fibrillatory rotors. Increasing extent of fibrosis and scar may eventually convert fibrillation to excitable gap reentry. Such macro-reentry can then be eliminated by extending the obstacle or by external stimuli that penetrate the excitable gap.


Atrial Fibrillation/diagnosis , Atrial Function, Right , Computer Simulation , Heart Atria/physiopathology , Models, Cardiovascular , Action Potentials , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/physiopathology , Atrial Fibrillation/therapy , Electrophysiologic Techniques, Cardiac , Fibrosis , Finite Element Analysis , Heart Atria/diagnostic imaging , Heart Atria/pathology , Humans , Male , Predictive Value of Tests , Refractory Period, Electrophysiological , Time Factors , Tomography, X-Ray Computed
11.
Front Pharmacol ; 5: 110, 2014.
Article En | MEDLINE | ID: mdl-24994983

Calcium/calmodulin-dependent protein kinase II (CaMKII) activity has been shown to contribute to arrhythmogenesis in a remarkably broad range of cardiac pathologies. Several of these involve significant structural and electrophysiologic remodeling, whereas others are due to specific channelopathies, and are not typically associated with arrhythmogenic changes to protein expression or cellular and tissue structure. The ability of CaMKII to contribute to arrhythmia across such a broad range of phenotypes suggests one of two interpretations regarding the role of CaMKII in cardiac arrhythmia: (1) some CaMKII-dependent mechanism is a common driver of arrhythmia irrespective of the specific etiology of the disease, or (2) these different etiologies expose different mechanisms by which CaMKII is capable of promoting arrhythmia. In this review, we dissect the available mechanistic evidence to explore these two possibilities and discuss how the various molecular actions of CaMKII promote arrhythmia in different pathophysiologic contexts.

12.
Am J Physiol Heart Circ Physiol ; 305(2): H192-202, 2013 Jul 15.
Article En | MEDLINE | ID: mdl-23666676

Electrical dyssynchrony leads to prestretch in late-activated regions and alters the sequence of mechanical contraction, although prestretch and its mechanisms are not well defined in the failing heart. We hypothesized that in heart failure, fiber prestretch magnitude increases with the amount of early-activated tissue and results in increased end-systolic strains, possibly due to length-dependent muscle properties. In five failing dog hearts with scars, three-dimensional strains were measured at the anterolateral left ventricle (LV). Prestretch magnitude was varied via ventricular pacing at increasing distances from the measurement site and was found to increase with activation time at various wall depths. At the subepicardium, prestretch magnitude positively correlated with the amount of early-activated tissue. At the subendocardium, local end-systolic strains (fiber shortening, radial wall thickening) increased proportionally to prestretch magnitude, resulting in greater mean strain values in late-activated compared with early-activated tissue. Increased fiber strains at end systole were accompanied by increases in preejection fiber strain, shortening duration, and the onset of fiber relengthening, which were all positively correlated with local activation time. In a dog-specific computational failing heart model, removal of length and velocity dependence on active fiber stress generation, both separately and together, alter the correlations between local electrical activation time and timing of fiber strains but do not primarily account for these relationships.


Heart Failure/physiopathology , Myocardial Contraction , Myocardium/pathology , Tachycardia, Ventricular/physiopathology , Ventricular Function, Left , Animals , Biomechanical Phenomena , Cardiac Pacing, Artificial , Disease Models, Animal , Dogs , Electrocardiography , Electrophysiologic Techniques, Cardiac , Finite Element Analysis , Heart Failure/complications , Heart Failure/pathology , Hemodynamics , Magnetic Resonance Imaging , Models, Cardiovascular , Stroke Volume , Systole , Tachycardia, Ventricular/complications , Tachycardia, Ventricular/pathology , Time Factors , Ventricular Pressure
...