Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Clin Invest ; 134(7)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349762

RESUMEN

Corticosteroid treatment (CST) failure is associated with poor outcomes for patients with gastrointestinal (GI) graft-versus-host disease (GVHD). CST is intended to target the immune system, but the glucocorticoid receptor (GR) is widely expressed, including within the intestines, where its effects are poorly understood. Here, we report that corticosteroids (CS) directly targeted intestinal epithelium, potentially worsening immune-mediated GI damage. CS administered to mice in vivo and intestinal organoid cultures ex vivo reduced epithelial proliferation. Following irradiation, immediate CST mitigated GI damage but delayed treatment attenuated regeneration and exacerbated damage. In a murine steroid-refractory (SR) GVHD model, CST impaired epithelial regeneration, worsened crypt loss, and reduced intestinal stem cell (ISC) frequencies. CST also exacerbated immune-mediated damage in organoid cultures with SR, GR-deficient T cells or IFN-γ. These findings correlated with CS-dependent changes in apoptosis-related gene expression and STAT3-related epithelial proliferation. Conversely, IL-22 administration enhanced STAT3 activity and overcame CS-mediated attenuation of regeneration, reducing crypt loss and promoting ISC expansion in steroid-treated mice with GVHD. Therefore, CST has the potential to exacerbate GI damage if it fails to control the damage-inducing immune response, but this risk may be countered by strategies augmenting epithelial regeneration, thus providing a rationale for clinical approaches combining such tissue-targeted therapies with immunosuppression.


Asunto(s)
Enfermedad Injerto contra Huésped , Intestinos , Humanos , Ratones , Animales , Mucosa Intestinal/metabolismo , Corticoesteroides , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/metabolismo , Esteroides/metabolismo , Regeneración/efectos de la radiación
2.
Nat Commun ; 14(1): 5411, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669929

RESUMEN

Intestinal stem cells (ISCs) maintain the epithelial lining of the intestines, but mechanisms regulating ISCs and their niche after damage remain poorly understood. Utilizing radiation injury to model intestinal pathology, we report here that the Interleukin-33 (IL-33)/ST2 axis, an immunomodulatory pathway monitored clinically as an intestinal injury biomarker, regulates intrinsic epithelial regeneration by inducing production of epidermal growth factor (EGF). Three-dimensional imaging and lineage-specific RiboTag induction within the stem cell compartment indicated that ISCs expressed IL-33 in response to radiation injury. Neighboring Paneth cells responded to IL-33 by augmenting production of EGF, which promoted ISC recovery and epithelial regeneration. These findings reveal an unknown pathway of niche regulation and crypt regeneration whereby the niche responds dynamically upon injury and the stem cells orchestrate regeneration by regulating their niche. This regenerative circuit also highlights the breadth of IL-33 activity beyond immunomodulation and the therapeutic potential of EGF administration for treatment of intestinal injury.


Asunto(s)
Interleucina-33 , Traumatismos por Radiación , Humanos , Factor de Crecimiento Epidérmico , Imagenología Tridimensional , Inmunomodulación
3.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883565

RESUMEN

Gastrointestinal graft-versus-host disease (GvHD) is a major cause of mortality and morbidity following allogeneic bone marrow transplantation (allo-BMT). Chemerin is a chemotactic protein that recruits leukocytes to inflamed tissues by interacting with ChemR23/CMKLR1, a chemotactic receptor expressed by leukocytes, including macrophages. During acute GvHD, chemerin plasma levels were strongly increased in allo-BM-transplanted mice. The role of the chemerin/CMKLR1 axis in GvHD was investigated using Cmklr1-KO mice. WT mice transplanted with an allogeneic graft from Cmklr1-KO donors (t-KO) had worse survival and more severe GvHD. Histological analysis demonstrated that the gastrointestinal tract was the organ mostly affected by GvHD in t-KO mice. The severe colitis of t-KO mice was characterized by massive neutrophil infiltration and tissue damage associated with bacterial translocation and exacerbated inflammation. Similarly, Cmklr1-KO recipient mice showed increased intestinal pathology in both allogeneic transplant and dextran sulfate sodium-induced colitis. Notably, the adoptive transfer of WT monocytes into t-KO mice mitigated GvHD manifestations by decreasing gut inflammation and T cell activation. In patients, higher chemerin serum levels were predictive of GvHD development. Overall, these results suggest that CMKLR1/chemerin may be a protective pathway for the control of intestinal inflammation and tissue damage in GvHD.


Asunto(s)
Trasplante de Médula Ósea , Colitis , Enfermedad Injerto contra Huésped , Animales , Ratones , Traslado Adoptivo/métodos , Traslocación Bacteriana/genética , Traslocación Bacteriana/inmunología , Trasplante de Médula Ósea/efectos adversos , Quimiocinas/sangre , Quimiocinas/genética , Quimiocinas/inmunología , Colitis/sangre , Colitis/genética , Colitis/inmunología , Colitis/patología , Colitis/terapia , Enfermedad Injerto contra Huésped/sangre , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/terapia , Inflamación/sangre , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/inmunología , Monocitos/inmunología , Monocitos/trasplante , Infiltración Neutrófila/genética , Infiltración Neutrófila/inmunología , Receptores de Quimiocina/sangre , Receptores de Quimiocina/genética , Receptores de Quimiocina/inmunología , Trasplante Homólogo/efectos adversos
5.
Cytotherapy ; 19(2): 200-210, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27939374

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent cells characterized by broad immunomodulatory properties exploited for the treatment of inflammatory disorders. However, the efficacy of MSC-based therapy is highly variable and tightly linked to MSC culture conditions and treatment schedule. Thus, the identification of novel key molecules regulating MSC immunomodulatory activities in vivo might constitute a crucial step toward the optimization of currently available clinical protocols. In this regard, herein, we sought to determine whether the newly identified chemotactic protein, chemerin, plays a role in MSC-mediated regulation of inflammation. METHODS: Chemerin production by human MSCs was investigated under different culture conditions using enzyme-linked immunosorbent assay (ELISA). After purification, MSC-secreted chemerin was identified using mass spectrometry analysis and the biological activity of secreted isoforms was evaluated using migration assay. RESULTS: Bone marrow-derived MSCs secrete chemerin and express its receptors ChemR23 and CCRL2. Chemerin production is dependent on culture conditions and increases upon stimulation with inflammatory cytokines. In particular, platelet lysate (PL)-MSCs produce higher levels of chemerin compared with fetal bovine serum (FBS)-MSCs. Furthermore, chemerin is secreted by MSCs as an inactive precursor, which can be converted into its active form by exogenous chemerin-activating serine and cysteine proteases. DISCUSSION: Our data indicate that, in response to various inflammatory stimuli, MSCs secrete high amounts of inactive chemerin, which can then be activated by inflammation-induced tissue proteases. In light of these initial findings, we propose that further analysis of chemerin functions in vivo might constitute a crucial step toward optimizing MSC-based therapy for inflammatory diseases.


Asunto(s)
Quimiotaxis/efectos de los fármacos , Proteínas Quimerinas/farmacología , Inmunomodulación/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Receptores de Quimiocina/metabolismo , Plaquetas/química , Técnicas de Cultivo de Célula , Extractos Celulares/química , Extractos Celulares/farmacología , Células Cultivadas , Quimiotaxis/genética , Proteínas Quimerinas/genética , Proteínas Quimerinas/metabolismo , Medios de Cultivo/metabolismo , Medios de Cultivo/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunomodulación/genética , Inflamación/metabolismo , Inflamación/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Receptores de Quimiocina/genética
6.
Oncotarget ; 7(50): 82123-82138, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27893415

RESUMEN

Acute Graft-versus-Host Disease (GvHD) remains a major complication of allogeneic haematopoietic stem cell transplantation, with a significant proportion of patients failing to respond to first-line systemic corticosteroids. Reliable biomarkers predicting disease severity and response to treatment are warranted to improve its management. Thus, we sought to determine whether pentraxin 3 (PTX3), an acute-phase protein produced locally at the site of inflammation, could represent a novel acute GvHD biomarker. Using a murine model of the disease, we found increased PTX3 plasma levels after irradiation and at GvHD onset. Similarly, plasma PTX3 was enhanced in 115 pediatric patients on day of transplantation, likely due to conditioning, and at GvHD onset in patients experiencing clinical symptoms of the disease. PTX3 was also found increased in skin and colon biopsies from patients with active disease. Furthermore, PTX3 plasma levels at GvHD onset were predictive of disease outcome since they resulted significantly higher in both severe and therapy-unresponsive patients. Multiple injections of rhPTX3 in the murine model of GvHD did not influence the disease course. Taken together, our results indicate that PTX3 constitutes a biomarker of GvHD severity and therapy response useful to tailor treatment intensity according to early risk-stratification of GvHD patients.


Asunto(s)
Corticoesteroides/uso terapéutico , Proteína C-Reactiva/análisis , Enfermedad Injerto contra Huésped/sangre , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Componente Amiloide P Sérico/análisis , Adolescente , Factores de Edad , Animales , Biomarcadores/sangre , Niño , Preescolar , Modelos Animales de Enfermedad , Resistencia a Medicamentos , Femenino , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Humanos , Italia , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Valor Predictivo de las Pruebas , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Factores de Tiempo , Trasplante Homólogo , Resultado del Tratamiento , Regulación hacia Arriba , Adulto Joven
7.
Neurotherapeutics ; 11(3): 679-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24965140

RESUMEN

Microglia/macrophages (M) are major contributors to postinjury inflammation, but they may also promote brain repair in response to specific environmental signals that drive classic (M1) or alternative (M2) polarization. We investigated the activation and functional changes of M in mice with traumatic brain injuries and receiving intracerebroventricular human bone marrow mesenchymal stromal cells (MSCs) or saline infusion. MSCs upregulated Ym1 and Arginase-1 mRNA (p < 0.001), two M2 markers of protective M polarization, at 3 and 7 d postinjury, and increased the number of Ym1(+) cells at 7 d postinjury (p < 0.05). MSCs reduced the presence of the lysosomal activity marker CD68 on the membrane surface of CD11b-positive M (p < 0.05), indicating reduced phagocytosis. MSC-mediated induction of the M2 phenotype in M was associated with early and persistent recovery of neurological functions evaluated up to 35 days postinjury (p < 0.01) and reparative changes of the lesioned microenvironment. In vitro, MSCs directly counteracted the proinflammatory response of primary murine microglia stimulated by tumor necrosis factor-α + interleukin 17 or by tumor necrosis factor-α + interferon-γ and induced M2 proregenerative traits, as indicated by the downregulation of inducible nitric oxide synthase and upregulation of Ym1 and CD206 mRNA (p < 0.01). In conclusion, we found evidence that MSCs can drive the M transcriptional environment and induce the acquisition of an early, persistent M2-beneficial phenotype both in vivo and in vitro. Increased Ym1 expression together with reduced in vivo phagocytosis suggests M selection by MSCs towards the M2a subpopulation, which is involved in growth stimulation and tissue repair.


Asunto(s)
Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/terapia , Encéfalo/metabolismo , Polaridad Celular , Células Madre Mesenquimatosas/metabolismo , Microglía/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Humanos , Inyecciones Intraventriculares , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Macrófagos/metabolismo , Masculino , Trasplante de Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , Actividad Motora , ARN Mensajero/metabolismo
8.
J Sex Med ; 10(7): 1800-6, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23534937

RESUMEN

INTRODUCTION: Charcot-Marie-Tooth (CMT) disease is one of the most frequently inherited neurological disorders, and while it is known that individuals suffering from this condition have low quality of life, little is known about their sexual function and satisfaction. AIM: To describe the functioning on different domains of sexuality in a relatively large sample of women with CMT, provide comparisons between mildly and severely affected patients and between women with the two different types of CMT (demyelinating vs. axonal), and assess the relationship between sexual function and age of onset. METHODS: Fifty-seven women (age: 18-60 years) were approached in a CMT rehabilitation clinic by a psychologist and administered the Italian version of the McCoy Female Sexuality Questionnaire (MFSQ). Data from 40 patients who had had sexual intercourse in the previous 4 weeks were analyzed. MAIN OUTCOME MEASURE: The main outcome measures are the factors MFSQ-SEX and MFSQ-PARTNER, which describe sexual functioning and sexual satisfaction with a partner, respectively. RESULTS: Almost 30% of women did not engage in sexual intercourse with a partner. Overall sexual problems were more prominent in younger women and tended to be lower as age increased: this pattern was different from what was reported in previous studies in comparable samples of healthy Italian women. Severity of CMT was associated with better sexual functioning in the areas of desire, arousal, orgasm, and satisfaction, with women with more severe symptoms reporting greater functioning. Women with more severe CMT symptoms reported more pain during intercourse. Age of CMT onset and type of CMT (demyelinating vs. axonal) were not associated with differences in sexual functioning. CONCLUSIONS: Findings point to the importance of including assessment of sexual dysfunction in young women with mild CMT symptoms and the importance of providing sex therapy or counseling to these patients.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/epidemiología , Disfunciones Sexuales Psicológicas/epidemiología , Sexualidad , Adolescente , Adulto , Enfermedad de Charcot-Marie-Tooth/psicología , Dispareunia/epidemiología , Femenino , Humanos , Italia/epidemiología , Persona de Mediana Edad , Orgasmo , Factores Sexuales , Disfunciones Sexuales Psicológicas/psicología , Encuestas y Cuestionarios , Adulto Joven
9.
Biol Blood Marrow Transplant ; 16(9): 1293-301, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20350611

RESUMEN

Despite advances in graft-versus-host-disease (GVHD) treatment, it is estimated that overall survival (OS) at 2 years for hematopoietic cell transplantation (HCT) recipients who experience steroid-resistant GVHD is 10%. Among recent therapeutic approaches for GVHD treatment, mesenchymal stromal cells (MSCs) hold a key position. We describe a multicenter experience of 11 pediatric patients diagnosed with acute or chronic GVHD (aGVHD, cGVHD) treated for compassionate use with GMP-grade unrelated HLA-disparate donors' bone marrow-derived MSCs, expanded in platelet-lysate (PL)-containing medium. Eleven patients (aged 4-15 years) received intravenous (i.v.) MSCs for aGVHD or cGVHD, which was resistant to multiple lines of immunosuppression. The median dose was 1.2 x 10(6)/kg (range: 0.7-3.7 x 10(6)/kg). No acute side effects were observed, and no late side effects were reported at a median follow-up of 8 months (range: 4-18 months). Overall response was obtained in 71.4% of patients, with complete response in 23.8% of cases. None of our patients presented GVHD progression upon MSC administration, but 4 patients presented GVHD recurrence 2 to 5 months after infusion. Two patients developed chronic limited GVHD. This study underlines the safety of PL-expanded MSC use in children. MSC efficacy seems to be greater in aGVHD than in cGVHD, even after failure of multiple lines of immunosuppression.


Asunto(s)
Plaquetas/inmunología , Enfermedad Injerto contra Huésped/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/inmunología , Terapia Recuperativa/métodos , Células del Estroma/inmunología , Adolescente , Plaquetas/citología , Niño , Preescolar , Ensayos de Uso Compasivo , Femenino , Enfermedad Injerto contra Huésped/inmunología , Humanos , Masculino , Células del Estroma/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...