Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-15, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286379

RESUMEN

SLC20A1/PiT1 is a sodium-dependent inorganic phosphate transporter, initially recognized as the retroviral receptor for Gibbon Ape Leukemia Virus in humans. SNPs in SLC20A1 is associated with Combined Pituitary Hormone Deficiency and Sodium Lithium Counter transport. Using in silico techniques, we have screened the nsSNPs for their deleterious effect on the structure and function of SLC20A1. Screening with sequence and structure-based tools on 430 nsSNPs, filtered 17 nsSNPs which are deleterious. To evaluate the role of these SNPs, protein modeling and MD simulations were performed. A comparative analysis of model generated with SWISS-MODEL and AlphaFold shows that many residues are in the disallowed region of Ramachandran plot. Since SWISS-MODEL structure has a 25-residue deletion, the AlphaFold structure was used to perform MD simulation for equilibration and structure refinement. Further, to understand perturbation of energetics, we performed in silico mutagenesis and ΔΔG calculation using FoldX on MD refined structures, which yielded SNPs that are neutral (3), destabilizing (12) and stabilizing (2) on protein structure. Furthermore, to elucidate the impact of SNPs on structure, we performed MD simulations to discern the changes in RMSD, Rg, RMSF and LigPlot of interacting residues. RMSF profiles of representative SNPs revealed that A114V (neutral) and T58A (positive) were more flexible & C573F (negative) was more rigid compared to wild type, which is also reflected in the changes in number of local interacting residues in LigPlot and ΔΔG. Taken together, our results show that SNPs can lead to structural perturbations and impact the function of SLC20A1 with potential implications for disease.Communicated by Ramaswamy H. Sarma.

2.
Curr Protein Pept Sci ; 18(12): 1263-1272, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28699512

RESUMEN

Research interests on amphibian antimicrobial peptides (AMPs) are currently increasing because of their capability to combat microorganisms from both terrestrial and aquatic environments, which are the warehouses of human pathogens. The most remarkable feature of AMPs are their mechanism of action, primarily targeted to anionic membranes. Researchers have postulated many models to describe peptide- membrane interaction, which leads to membrane permeation/intracellular targeting. Despite these models information regarding the relationship between membrane curvature and peptidemembrane interaction is scarce. This relationship could be clearly depicted using the two-state model and interfacial activity model. In the review, we discuss in detail the two state and interfacial activity models and explain the influence of membrane curvature on peptide binding and the membrane interaction of curvature-sensitive peptides. In addition, the models proposed to explain the mechanism of action of membrane lytic and non-lytic AMPs are also reviewed.


Asunto(s)
Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Membrana Celular/química , Membrana Dobles de Lípidos/química , Modelos Estructurales , Anfibios/metabolismo , Animales , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA