Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
2.
J Psychiatr Res ; 164: 296-303, 2023 08.
Article En | MEDLINE | ID: mdl-37392719

Guanosine is a purinergic nucleoside that has been shown to have neuroprotective effects, mainly through its ability to modulate the glutamatergic system. An increase in pro-inflammatory cytokine levels triggers the activation of the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), leading to glutamatergic excitotoxicity, which has important roles in the pathophysiology of depression. The aim of this study was to investigate the possible antidepressant-like effects and underlying mechanisms of action of guanosine against lipopolysaccharide (LPS)-induced depression in a mouse model. Mice were orally pre-treated with saline (0.9% NaCl), guanosine (8 or 16 mg/kg), or fluoxetine (30 mg/kg) for 7 days before LPS (0.5 mg/kg, intraperitoneal) injection. One day after LPS injection, mice were subjected to the forced swim test (FST), tail suspension test (TST), and open field test (OFT). After the behavioral tests, mice were euthanized and the levels of tumor necrosis factor-α (TNF-α), IDO-1, glutathione, and malondialdehyde in the hippocampus were measured. Pretreatment with guanosine was able to prevent LPS- induced depressive-like behaviors in the TST and FST. In the OFT, no locomotor changes were observed with any treatment. Both guanosine (8 and 16 mg/kg/day) and fluoxetine treatment prevented the LPS-induced increase in TNF-α and IDO expression and lipid peroxidation as well as decrease of reduced glutathione levels in the hippocampus. Taken together, our findings suggest that guanosine may have neuroprotective effects against LPS-induced depressive-like behavior through preventing oxidative stress and the expression of IDO-1 and TNF-α in the hippocampus.


Depression , Neuroprotective Agents , Mice , Animals , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Lipopolysaccharides/pharmacology , Fluoxetine/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Guanosine/pharmacology , Neuroprotective Agents/pharmacology , Behavior, Animal , Hippocampus/metabolism
3.
Pharmacol Biochem Behav ; 218: 173433, 2022 07.
Article En | MEDLINE | ID: mdl-35901966

The present study evaluated the antidepressant-like effects of vilazodone using the tail suspension test in mice. We also investigated the contribution of kynurenine pathway and N-methyl-d-aspartate receptors to this effect. For this purpose, we pretreated animals with sub-effective doses of L-kynurenine, 3-hydroxykynurenine, or quinolinic acid. We then assessed the immobility time, an indicative measure of depressive-like behavior, in the tail suspension test. We also evaluated the possible effects of sub-effective doses of vilazodone combined with sub-effective doses of ketamine (N-methyl-d-aspartate receptor antagonist) in a separate group. Vilazodone (3mg/kg, intraperitoneal) significantly reduced immobility time in the tail suspension test. L-kynurenine (1.7 mg/kg, intraperitoneal), 3-hydroxykynurenine (10 mg/kg, intraperitoneal), and quinolinic acid (3 nmol/site, intracerebroventricular) significantly increased the immobility time in the tail suspension test. The antidepressant-like effects of vilazodone (3mg/kg, intraperitoneal) were inhibited by pre-treatment with non-effective doses of L-kynurenine (0.83 mg/kg, intraperitoneal), 3-hydroxykynurenine (3.33 mg/kg, intraperitoneal), or quinolinic acid (1 nmol/site, intracerebroventricular). Pretreatment of mice with sub-effective doses of ketamine (1 mg/kg, intraperitoneal) optimized the action of a sub-effective dose of vilazodone (0.3mg/kg, intraperitoneal) and reduced the immobility time in the tail suspension test. None of the drugs used in this study induced any changes in locomotor activity in the open field test. The results showed that vilazodone induced an antidepressant-like effect in the tail suspension test, which may be mediated through an interaction with the kynurenine pathway and N-methyl-d-aspartate receptors.


Ketamine , Receptors, N-Methyl-D-Aspartate , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depression/metabolism , Hindlimb Suspension/methods , Ketamine/pharmacology , Kynurenine/pharmacology , Mice , Quinolinic Acid , Swimming , Vilazodone Hydrochloride/pharmacology
5.
J Chem Neuroanat ; 100: 101655, 2019 10.
Article En | MEDLINE | ID: mdl-31202729

Swiss mice may be valuable for the screening of antidepressants in preclinical trials. Acute treatment with antidepressants may affect the behaviour of Swiss mice, but the effects on their hippocampal neurogenesis remain unknown. The present work aims to assess the influence of acute treatment with antidepressants on cell proliferation in the dentate gyrus of the hippocampus of adult Swiss mice. Cell proliferation was estimated by ex vivo counting of Ki-67 immunoreactive nuclei (Ki-67-ir) in the dentate gyrus of Swiss mice housed in standard or enriched environments, at survival-times 2 or 24 h after imipramine injection Independent of the experimental group, intraperitoneal imipramine (0 or 30 mg/kg) failed to change the number of Ki-67-ir in the hippocampus of mice. Through intracerebroventricular route, imipramine reduced the number of Ki-67-ir in the hippocampus of Swiss mice at the dose of 0.06 nmol and increased it at the dose 0.2 nmol. At the dose 0.2 nmol, not 0.06 nmol, imipramine increased the immunoreactivity to doublecortin (a marker for immature neurons) in the hippocampus of mice. The effects of intracerebroventricular injection of imipramine on neurogenesis markers were seen 24 h after the injection in mice housed in standard conditions. The effects of intracerebroventricular injection of imipramine on neurogenesis markers were absent in mice housed in enrichment or 2 h after the injection. These data suggest that acute treatment with imipramine may affect proliferation in the hippocampus of adult Swiss mice depending on the route of administration, doses, survival time and lodging conditions.


Antidepressive Agents, Tricyclic/administration & dosage , Hippocampus/drug effects , Imipramine/administration & dosage , Neurogenesis/drug effects , Animals , Cell Proliferation/drug effects , Housing, Animal , Male , Mice , Neurons/drug effects
6.
Brain Behav Evol ; 88(3-4): 222-234, 2016.
Article En | MEDLINE | ID: mdl-28118619

The lizard cortex has remarkable similarities with the mammalian hippocampus. Both regions process memories, have similar cytoarchitectural properties, and are important neurogenic foci in adults. Lizards show striking levels of widespread neurogenesis in adulthood and can regenerate entire cortical areas after injury. Nitric oxide (NO) is an important regulatory factor of mammalian neurogenesis and hippocampal function. However, little is known about its role in nonmammalian neurogenesis. Here, we analyzed the distribution, morphology, and dendritic complexity (Neurolucida reconstructions) of NO-producing neurons through NADPH diaphorase (NADPHd) activity, and how they compare with the distribution of doublecortin-positive (DCX+) neurons in the hippocampal formation of the neotropical lizard Tropidurus hispidus. NADPHd-positive (NADPHd+) neurons in the dorsomedial cortex (DMC; putatively homologous to mammalian CA3) were more numerous and complex than the ones in the medial cortex (MC; putatively homologous to the dentate gyrus). We found that NADPHd+ DMC neurons send long projections into the MC. Interestingly, in the MC, NADPHd+ neurons existed in 2 patterns: small somata with low intensity of staining in the outer layer and large somata with high intensity of staining in the deep layer, a pattern similar to the mammalian cortex. Additionally, NADPHd+ neurons were absent in the granular cell layer of the MC. In contrast, DCX+ neurons were scarce in the DMC but highly numerous in the MC, particularly in the granular cell layer. We hypothesize that NO-producing neurons in the DMC provide important input to proliferating/migrating neurons in the highly neurogenic MC.


Hippocampus , Lizards , Microtubule-Associated Proteins/metabolism , NADPH Dehydrogenase/metabolism , Neurogenesis/physiology , Neurons , Neuropeptides/metabolism , Animals , Doublecortin Domain Proteins , Hippocampus/cytology , Hippocampus/metabolism , Lizards/metabolism , Male , Neurons/cytology , Neurons/metabolism
7.
Neurobiol Learn Mem ; 125: 63-72, 2015 Nov.
Article En | MEDLINE | ID: mdl-26247375

Environmental enrichment (EE) is a non-pharmacological manipulation that promotes diverse forms of benefits in the central nervous system of captive animals. It is thought that EE influences animal behavior in a specie-(strain)-specific manner. Since rodents in general present different behaviors during distinct periods of the day, in this study we aimed to investigate the influence of time-of-day on behavioral repertoire of Swiss mice that reared in EE. Forty male Swiss mice (21days old) were housed in standard (SC) or enriched conditions (EC) for 60days. Behavioral assessments were conducted during the light phase (in presence of light) or dark phase (in absence of light) in the following tasks: open field, object recognition and elevated plus maze. First, we observed that the locomotor and exploratory activities are distinct between SC and EC groups only during the light phase. Second, we observed that "self-protective behaviors" were increased in EC group only when mice were tested during the light phase. However, "less defensive behaviors" were not affected by both housing conditions and time-of-day. Third, we showed that the performance of EE animals in object recognition task was improved in both light and dark conditions. Our findings highlight that EE-induced alterations in exploratory and emotional behaviors are just evident during light conditions. However, EE-induced cognitive benefits are remarkable even during dark conditions, when exploratory and emotional behaviors were similar between groups.


Behavior, Animal/physiology , Environment , Exploratory Behavior/physiology , Maze Learning/physiology , Motor Activity/physiology , Animals , Housing, Animal , Male , Mice
8.
Neurotox Res ; 28(1): 32-42, 2015 Jul.
Article En | MEDLINE | ID: mdl-25827781

Deposition of amyloid-ß (Aß) peptides into specific encephalic structures has been pointed as an important event related to Alzheimer's disease pathogenesis and associated with activation of glial cells, neuroinflammation, oxidative responses, and cognitive deficits. Aß-induced pro-oxidative damage may regulate the activity of glutamate transporters, leading to reduced glutamate uptake and, as a consequence, excitotoxic events. Herein, we evaluated the effects of the pretreatment of atorvastatin, a HMG-CoA reductase inhibitor, on behavioral and biochemical alterations induced by a single intracerebroventricular (i.c.v.) injection of aggregated Aß1-40 in mice. Atorvastatin (10 mg/kg/day, p.o.) was administered through seven consecutive days before Aß1-40 administration. Aß1-40 caused significant cognitive impairment in the object-place recognition task (2 weeks after the i.c.v. injection) and this phenomenon was abolished by atorvastatin pretreatment. Ex vivo evaluation of glutamate uptake into hippocampal and cerebral cortices slices showed atorvastatin, and Aß1-40 decreased hippocampal and cortical Na(+)-dependent glutamate uptake. However, Aß1-40 increased Na(+)-independent glutamate uptake and it was prevented by atorvastatin in prefrontal cortex slices. Moreover, Aß1-40 treatment significantly increased the cerebrocortical activities of glutathione reductase and glutathione peroxidase and these events were blunted by atorvastatin pretreatment. Reduced or oxidized glutathione levels were not altered by Aß1-40 and/or atorvastatin treatment. These results extend the notion of the protective action of atorvastatin against neuronal toxicity induced by Aß1-40 demonstrating that a pretreatment with atorvastatin prevents the spatial learning and memory deficits induced by Aß in rodents and promotes changes in glutamatergic and antioxidant systems mainly in prefrontal cortex.


Amyloid beta-Peptides/toxicity , Atorvastatin/administration & dosage , Cognition Disorders/chemically induced , Cognition Disorders/prevention & control , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Peptide Fragments/toxicity , Acetylcholinesterase/metabolism , Animals , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Infusions, Intraventricular , Male , Mice , Oxidative Stress , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Recognition, Psychology/drug effects , Spatial Learning/drug effects , Spatial Memory/drug effects
9.
Physiol Behav ; 143: 27-34, 2015 May 01.
Article En | MEDLINE | ID: mdl-25700896

Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby inhibiting cell synthesis of cholesterol and isoprenoids. Moreover, several studies have been evaluating pleiotropic effects of statins, mainly because they present neuroprotective effects in various pathological conditions. However, knowledge about behavioral effects of statins per se is relatively scarce. Considering these facts, we aimed to analyze behavioral responses of atorvastatin or simvastatin-treated mice in the open field test, elevated plus maze and object location test. Atorvastatin treatment for 7 consecutive days at 1 mg/kg or 10 mg/kg (v.o.) or simvastatin 10 mg/kg or 20 mg/kg enhanced cognitive performance in object location test when compared to control group (saline-treated mice). Simvastatin effects on mice performance in the object location test was abolished by post-training infusion of the beta-adrenoceptor antagonist propranolol. Atorvastatin and simvastatin did not change the behavioral response in open field and elevated plus-maze (EPM) tests in any of the used doses. These data demonstrate the positive effects of both statins in cognitive processes in mice, without any alteration in locomotor parameters in the open field test or anxiolytic-like behavior in EPM. In conclusion, we demonstrate that atorvastatin and simvastatin per se improve the cognitive performance in a rodent model of spatial memory and this effect is related to beta-adrenergic receptors modulation.


Cognition/drug effects , Exploratory Behavior/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Receptors, Adrenergic, beta/metabolism , Adrenergic beta-Antagonists/pharmacology , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Locomotion/drug effects , Male , Maze Learning/drug effects , Memory, Short-Term/drug effects , Mice , Propranolol/pharmacology , Random Allocation
11.
Appl Physiol Nutr Metab ; 35(5): 591-7, 2010 Oct.
Article En | MEDLINE | ID: mdl-20962914

Obesity has reached epidemic proportions worldwide and is stimulated by the ready availability of food rich in fat and sugar (highly palatable diet). This type of diet increases the risks of obesity-associated pathologies, such as insulin resistance and cardiovascular disease. Nitric oxide, a potent endogenous vasodilator, is decreased in these pathologies, mostly as a result of insulin resistance. Ectonucleotidases are ecto and soluble enzymes that regulate the availability of the nucleotides ATP, ADP, and AMP and the nucleoside adenosine in the vascular system, thereby affecting vasoconstriction, vasodilatation, and platelet aggregation homeostasis. The aim of this study was to evaluate the effects of a highly palatable diet on serum lipid and glucose parameters, nitric oxide, and ectonucleotidase activity. Forty male Wistar rats were fed 1 of 2 diets for either 45 days or 4 months: standard chow (SC, n = 10) or a highly palatable diet enriched with sucrose (HP, n = 10). Body mass, visceral fat mass, glucose tolerance, cholesterol (total, high-density lipoprotein (HDL) and non-HDL), serum triacylglycerol, liver triacylglycerol, and free glycerol were increased in the HP group after 45 days and after 4 months, whereas insulin levels were not different between the groups at either time. Furthermore, levels of nitric oxide metabolites and ATP, ADP, and AMP hydrolysis were significantly lower in the HP group (p < 0.05) after 4 months. In conclusion, the consumption of the HP diet for 4 months induced overall corporal and metabolic changes, and decreased nitric oxide metabolites and ectonucleotidase activity, thereby promoting an appropriate environment for the development of cardiovascular diseases, without apparent changes in insulin levels.


Adenosine Triphosphatases/metabolism , Animal Feed , Blood Glucose/metabolism , Lipids/blood , Nitric Oxide/metabolism , Obesity/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Dietary Fats/pharmacology , Dietary Sucrose/pharmacology , Enzyme Activation/physiology , Glucose Intolerance/metabolism , Glycerol/metabolism , Insulin/blood , Male , Rats , Rats, Wistar
12.
Chem Biol Interact ; 188(1): 15-20, 2010 Oct 06.
Article En | MEDLINE | ID: mdl-20599430

Vascular disease is a major cause of morbidity and mortality among transplanted recipients and cyclosporine (CsA) treatment has been consistently implicated in this event. In this study we assessed total blood homocysteine levels (tHcy), ecto-nucleotidase activities and adenine nucleotide/nucleoside levels searching for parameters related to the mechanisms of vascular damage induced by chronic CsA treatment in non-transplanted rats. Thirty male Wistar rats were divided in three groups: control group treated with corn oil, CsA 5mg/kg and CsA 15 mg/kg, administered by daily gastric gavage during 8 weeks. CsA 15 mg/kg treatment increased blood levels of tHcy. Both CsA treatments (5mg/kg and 15 mg/kg) decreased adenine nucleotides hydrolysis by ecto-nucleotidases in serum, which negatively correlated with tHcy levels (r: -0.74, r: -0.63 and r: -0.63, p<0.004, for ATP, ADP and AMP, respectively). CsA 15mg/kg induced a statistically significant increase in ADP and decrease in adenosine (ADO) plasma levels compared to control group. THcy levels were positively correlated with plasma ADP levels and negatively correlated with ADO levels (r: 0.84, p<0.0001 and r: -0.68, p<0.0001, respectively). Rats under CsA 15 mg/kg treatment presented cell injury and inflammatory responses in the endothelium and intima layer of the aorta artery. In conclusion, blood ecto-nucleotidases activity, tHcy, and ADP and ADO levels may be implicated in vascular injury induced by CsA treatment.


Cyclosporine/pharmacology , Homocysteine/blood , Receptors, Purinergic/metabolism , Adenine Nucleotides/metabolism , Animals , Aorta/metabolism , Chromatography, High Pressure Liquid , Cyclosporine/administration & dosage , Hydrolysis , Male , Rats , Rats, Wistar
13.
Physiol Behav ; 99(1): 17-21, 2010 Jan 12.
Article En | MEDLINE | ID: mdl-19825381

Environmental enrichment (EE) is an experimental model for studying neuroplasticity. EE is used to investigate behavioral modifications associated with gene-environmental interaction. The object recognition task (ORT) evaluates animals' ability to learn about their environment, which depends on their innate instinct. By using young CF1 mice, the present study evaluated the effect of 8 weeks of EE on the ORT. Our results indicate that EE decreased the time the animals spent exploring familiar and unfamiliar objects and total time spent exploring both objects, without affecting the capacity of discrimination of objects. These findings indicate a more propitious behavior for species survival in animals subjected to EE, including rapid exploration and learning about the environment.


Environment , Recognition, Psychology/physiology , Analysis of Variance , Animals , Behavior, Animal , Brain-Derived Neurotrophic Factor/metabolism , Discrimination, Psychological/physiology , Exploratory Behavior/physiology , Gene Expression Regulation/physiology , Hippocampus/metabolism , Male , Mice , Receptor, trkB/metabolism
14.
Epilepsy Res ; 75(2-3): 104-11, 2007 Jul.
Article En | MEDLINE | ID: mdl-17544258

Pentylenetetrazol (PTZ) is commonly used as a convulsant drug. The enhanced seizure susceptibility induced by kindling is probably attributable to plastic changes in the synaptic efficacy. Adenosine and guanosine act both as important neuromodulators and neuroprotectors with mostly inhibitory effects on neuronal activity. Adenosine and guanosine can be released per se or generated from released nucleotides (ATP, ADP, AMP, GTP, GDP, and GMP) that are metabolized and rapidly converted to adenosine and guanosine. The aim of this study was to evaluate nucleotide hydrolysis by ecto- and soluble nucleotidases (hippocampal slices and CSF, respectively) after PTZ-kindling (stages 3, 4, or 5 seizures) or saline treatment in rats. Additionally, the levels of purines in rat cerebrospinal fluid (CSF), as well as ecto-NTPDases (1, 2, 3, 5, 6 and 8) and ecto- 5'-nucleotidase expression were determined. Ecto-enzyme assays demonstrated that ATP, AMP, GDP, and GMP hydrolysis enhanced when compared with controls. In addition, there was an increase of ADP, GDP, and GMP hydrolysis by soluble nucleotidases in PTZ-kindling rats compared to control group. The HPLC analysis showed a marked increase in PTZ-kindled CSF concentrations of GTP, ADP, and uric acid, but GDP, AMP, and hypoxanthine concentrations were decreased. Such alterations indicate that the modulatory role of purines in CNS could be affected by PTZ-kindling. However, the physiological significance of these findings remains to be elucidated.


Adenine Nucleotides/metabolism , Convulsants , Guanine Nucleotides/metabolism , Hippocampus/metabolism , Kindling, Neurologic/drug effects , Pentylenetetrazole , 5'-Nucleotidase/biosynthesis , Adenine Nucleotides/cerebrospinal fluid , Animals , Chromatography, High Pressure Liquid , Female , Guanine Nucleotides/cerebrospinal fluid , Hippocampus/drug effects , Hippocampus/enzymology , Hydrolysis , Nerve Tissue Proteins/metabolism , Nucleotidases/metabolism , Purines/cerebrospinal fluid , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction
15.
Brain Res Brain Res Protoc ; 16(1-3): 58-64, 2005 Dec.
Article En | MEDLINE | ID: mdl-16310404

Parkinson's disease is a progressive dyskinetic disorder caused by degeneration of mesencephalic dopaminergic neurons in the substantia nigra pars compacta (SNpc) and, to a lesser extent, in the ventral tegmental area (VTA). Tyrosine hydroxylase (TH) is a rate-limiting enzyme for dopamine synthesis, therefore immunohistochemistry for TH can be used as an important marker of dopaminergic cell loss in these regions. Traditionally, immunohistochemical experiments are analyzed qualitatively by optical microscopic observation or more rarely semi-quantitatively evaluated by densitometry. A common problem with such papers is the lack of a clear explanation of the algorithms and macros employed in the semi-quantitative approaches. In this paper, we describe, in detail, an easy, fast and precise protocol for the analysis of TH immunoreactivity in SNpc and VTA using one of the most popular image analysis software packages (Image Pro-Plus). We believe that this protocol will facilitate the evaluation of mesencephalic TH immunoreactivity in various available animal models of Parkinson's disease.


Substantia Nigra/enzymology , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/enzymology , Animals , Calibration , Cell Count , Densitometry , Image Processing, Computer-Assisted , Immunohistochemistry , Indicators and Reagents , Oxidopamine , Rats , Rats, Wistar , Substantia Nigra/drug effects , Sympathectomy, Chemical , Sympatholytics , Tissue Fixation , Ventral Tegmental Area/drug effects
16.
Brain Res ; 986(1-2): 200-5, 2003 Oct 03.
Article En | MEDLINE | ID: mdl-12965246

The immunostaining for tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc) and in the ventral tegmental area (VTA) after intranigral infusion of 6-hydroxydopamine (6-OHDA, 6 microg/side) was analyzed in ovariectomized adult female Wistar rats. Estrogen replacement for 52 days (400-microg 17-beta-estradiol capsules) did not prevent the loss of TH-immunoreactive cells induced by 6-OHDA in the SNpc. This result indicates that the neuroprotective effect of dopaminergic mesencephalic cells is not observed with long-term estrogen replacement.


Estrogens/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/drug therapy , Substantia Nigra/drug effects , Animals , Dopamine/metabolism , Female , Neurons/metabolism , Oxidopamine/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Rats , Rats, Wistar , Substantia Nigra/pathology , Substantia Nigra/physiopathology , Treatment Failure , Tyrosine 3-Monooxygenase/metabolism , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/pathology , Ventral Tegmental Area/physiopathology
...