Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 80: 101879, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237895

RESUMEN

OBJECTIVE: Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM), requiring insulin therapy similar to T1D. While the negative effects on insulin processing and secretion are known, how dominant insulin mutations result in a continued decline of beta cell function after birth is not well understood. METHODS: We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations using patient-derived iPSCs and mutated hESCs. RESULTS: we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on beta-cell mass and function after transplantation into mice. In addition to anticipated ER stress, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. CONCLUSIONS: These results highlight a novel mechanism, the loss of beta cell identity, contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.


Asunto(s)
Diabetes Mellitus , Insulina , Humanos , Animales , Ratones , Insulina/genética , Proinsulina/genética , Diabetes Mellitus/genética , Mutación/genética , Insulina Regular Humana/genética
2.
bioRxiv ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37745320

RESUMEN

Heterozygous coding sequence mutations of the INS gene are a cause of permanent neonatal diabetes (PNDM) that results from beta cell failure. We explored the causes of beta cell failure in two PNDM patients with two distinct INS mutations. Using b and mutated hESCs, we detected accumulation of misfolded proinsulin and impaired proinsulin processing in vitro, and a dominant-negative effect of these mutations on the in vivo performance of patient-derived SC-beta cells after transplantation into NSG mice. These insulin mutations derange endoplasmic reticulum (ER) homeostasis, and result in the loss of beta-cell mass and function. In addition to anticipated apoptosis, we found evidence of beta-cell dedifferentiation, characterized by an increase of cells expressing both Nkx6.1 and ALDH1A3, but negative for insulin and glucagon. These results highlight both known and novel mechanisms contributing to the loss and functional failure of human beta cells with specific insulin gene mutations.

3.
Stem Cell Reports ; 11(6): 1407-1415, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30503261

RESUMEN

Permanent neonatal diabetes mellitus (PNDM) can be caused by insulin mutations. We generated induced pluripotent stem cells from fibroblasts of a patient with PNDM and undetectable insulin at birth due to a homozygous mutation in the translation start site of the insulin gene. Differentiation of mutant cells resulted in insulin-negative endocrine stem cells expressing MAFA, NKX6.1, and chromogranin A. Correction of the mutation in stem cells and differentiation to pancreatic endocrine cells restored insulin production and insulin secretion to levels comparable to those of wild-type cells. Grafting of corrected cells into mice, followed by ablating mouse ß cells using streptozotocin, resulted in normal glucose homeostasis, including at night, and the stem cell-derived grafts adapted insulin secretion to metabolic changes. Our study provides proof of principle for the generation of genetically corrected cells autologous to a patient with non-autoimmune insulin-dependent diabetes. These cases should be readily amenable to autologous cell therapy.


Asunto(s)
Diabetes Mellitus/genética , Edición Génica , Sitios Genéticos , Células Secretoras de Insulina/metabolismo , Insulina/genética , Mutación/genética , Secuencia de Bases , Glucemia/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Codón Iniciador/genética , Homeostasis , Homocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Recién Nacido , Estabilidad del ARN/genética
4.
Diabetes ; 67(1): 26-35, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931519

RESUMEN

ß-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into ß-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature ß-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These ß-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-ß-cells maintain normal blood glucose levels after ablation of the mouse endogenous ß-cells. Cystic structures, but no teratomas, were observed in NT-ES-ß-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in ß-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-ß-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Células Madre Embrionarias/citología , Células Secretoras de Insulina/citología , Animales , Glucemia/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/inmunología , Células Madre Embrionarias/fisiología , Femenino , Citometría de Flujo , Glucosa/farmacología , Proteínas de Homeodominio/metabolismo , Humanos , Huésped Inmunocomprometido , Inmunohistoquímica , Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Masculino , Ratones
5.
Am J Physiol Cell Physiol ; 306(4): C343-53, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24259420

RESUMEN

The in vitro perfused rectal gland of the dogfish shark (Squalus acanthias) and filter-grown monolayers of primary cultures of shark rectal gland (SRG) epithelial cells were used to analyze the signal transduction pathway by which C-type natriuretic peptide (CNP) stimulates chloride secretion. CNP binds to natriuretic receptors in the basolateral membrane, elevates cellular cGMP, and opens cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in the apical membrane. CNP-provoked chloride secretion was completely inhibitable by the nonspecific protein kinase inhibitor staurosporine and the PKA inhibitor H89 but insensitive to H8, an inhibitor of type I and II isoforms of cGMP-dependent protein kinase (cGKI and cGKII). CNP-induced secretion could not be mimicked by nonhydrolyzable cGMP analogs added alone or in combination with the protein kinase C activator phorbolester, arguing against a role for cGK or for cGMP-induced PKC signaling. We failed to detect a dogfish ortholog of cGKII by molecular cloning and affinity chromatography. However, inhibitors of the cGMP-inhibitable isoform of phosphodiesterase (PDE3) including milrinone, amrinone, and cilostamide but not inhibitors of other PDE isoenzymes mimicked the effect of CNP on chloride secretion in perfused glands and monolayers. CNP raised cGMP and cAMP levels in the SRG epithelial cells. This rise in cAMP as well as the CNP and amrinone-provoked chloride secretion, but not the rise in cGMP, was almost completely blocked by the Gαi-coupled adenylyl cyclase inhibitor somatostatin, arguing against a role for cGMP cross-activation of PKA in CNP action. These data provide molecular, functional, and pharmacological evidence for a CNP/cGMP/PDE3/cAMP/PKA signaling cascade coupled to CFTR in the SRG.


Asunto(s)
Cloruros/metabolismo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Cazón/metabolismo , Proteínas de Peces/metabolismo , Péptido Natriurético Tipo-C/metabolismo , Glándula de Sal/enzimología , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Animales , Células Cultivadas , Clonación Molecular , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/antagonistas & inhibidores , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/antagonistas & inhibidores , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Activación del Canal Iónico , Masculino , Inhibidores de Fosfodiesterasa 3/farmacología , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Receptores del Factor Natriurético Atrial/metabolismo , Glándula de Sal/efectos de los fármacos , Sistemas de Mensajero Secundario , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...