Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; : e0040924, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869284

RESUMEN

Aerosol transmission remains a major challenge for control of respiratory viruses, particularly those causing recurrent epidemics, like influenza A virus (IAV). These viruses are rarely expelled alone, but instead are embedded in a consortium of microorganisms that populate the respiratory tract. The impact of microbial communities and inter-pathogen interactions upon stability of transmitted viruses is well-characterized for enteric pathogens, but is under-studied in the respiratory niche. Here, we assessed whether the presence of five different species of commensal respiratory bacteria could influence the persistence of IAV within phosphate-buffered saline and artificial saliva droplets deposited on surfaces at typical indoor air humidity, and within airborne aerosol particles. In droplets, presence of individual species or a mixed bacterial community resulted in 10- to 100-fold more infectious IAV remaining after 1 h, due to bacterial-mediated flattening of drying droplets and early efflorescence. Even when no efflorescence occurred at high humidity or the bacteria-induced changes in droplet morphology were abolished by aerosolization instead of deposition on a well plate, the bacteria remained protective. Staphylococcus aureus and Streptococcus pneumoniae were the most stabilizing compared to other commensals at equivalent density, indicating the composition of an individual's respiratory microbiota is a previously unconsidered factor influencing expelled virus persistence.IMPORTANCEIt is known that respiratory infections such as coronavirus disease 2019 and influenza are transmitted by release of virus-containing aerosols and larger droplets by an infected host. The survival time of viruses expelled into the environment can vary depending on temperature, room air humidity, UV exposure, air composition, and suspending fluid. However, few studies consider the fact that respiratory viruses are not alone in the respiratory tract-we are constantly colonized by a plethora of bacteria in our noses, mouth, and lower respiratory system. In the gut, enteric viruses are known to be stabilized against inactivation and environmental decay by gut bacteria. Despite the presence of a similarly complex bacterial microbiota in the respiratory tract, few studies have investigated whether viral stabilization could occur in this niche. Here, we address this question by investigating influenza A virus stabilization by a range of commensal bacteria in systems representing respiratory aerosols and droplets.

2.
J Virol ; 97(10): e0127123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37819131

RESUMEN

IMPORTANCE: The respiratory tract of humans is constantly exposed to potentially harmful agents, such as small particles or pathogens, and thus requires protective measures. Respiratory mucus that lines the airway epithelia plays a major role in the prevention of viral infections by limiting the mobility of viruses, allowing subsequent mucociliary clearance. Understanding the interplay between respiratory mucus and viruses can help elucidate host and virus characteristics that enable the initiation of infection. Here, we tested a panel of primary influenza A viruses of avian or human origin for their sensitivity to mucus derived from primary human airway cultures and found that differences between virus strains can be mapped to viral neuraminidase activity. We also show that binding of influenza A viruses to decoy receptors on highly glycosylated mucus components constitutes the major inhibitory function of mucus against influenza A viruses.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Moco , Neuraminidasa , Animales , Humanos , Aves , Virus de la Influenza A/metabolismo , Moco/metabolismo , Neuraminidasa/metabolismo , Sistema Respiratorio/metabolismo
3.
mSphere ; 8(5): e0022623, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37594288

RESUMEN

Multiple respiratory viruses, including influenza A virus (IAV), can be transmitted via expiratory aerosol particles, and aerosol pH was recently identified as a major factor influencing airborne virus infectivity. Indoors, small exhaled aerosols undergo rapid acidification to pH ~4. IAV is known to be sensitive to mildly acidic conditions encountered within host endosomes; however, it is unknown whether the same mechanisms could mediate viral inactivation within the more acidic aerosol micro-environment. Here, we identified that transient exposure to pH 4 caused IAV inactivation by a two-stage process, with an initial sharp decline in infectious titers mainly attributed to premature attainment of the post-fusion conformation of viral protein haemagglutinin (HA). Protein changes were observed by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) as early as 10 s post-exposure to acidic conditions. Our HDX-MS data are in agreement with other more labor-intensive structural analysis techniques, such as X-ray crystallography, highlighting the ease and usefulness of whole-virus HDX-MS for multiplexed protein analyses, even within enveloped viruses such as IAV. Additionally, virion integrity was partially but irreversibly affected by acidic conditions, with a progressive unfolding of the internal matrix protein 1 (M1) that aligned with a more gradual decline in viral infectivity with time. In contrast, no acid-mediated changes to the genome or lipid envelope were detected. Improved understanding of respiratory virus fate within exhaled aerosols constitutes a global public health priority, and information gained here could aid the development of novel strategies to control the airborne persistence of seasonal and/or pandemic influenza in the future. IMPORTANCE It is well established that COVID-19, influenza, and many other respiratory diseases can be transmitted by the inhalation of aerosolized viruses. Many studies have shown that the survival time of these airborne viruses is limited, but it remains an open question as to what drives their infectivity loss. Here, we address this question for influenza A virus by investigating structural protein changes incurred by the virus under conditions relevant to respiratory aerosol particles. From prior work, we know that expelled aerosols can become highly acidic due to equilibration with indoor room air, and our results indicate that two viral proteins are affected by these acidic conditions at multiple sites, leading to virus inactivation. Our findings suggest that the development of air treatments to quicken the speed of aerosol acidification would be a major strategy to control infectious bioburdens in the air.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/fisiología , Aerosoles y Gotitas Respiratorias , Concentración de Iones de Hidrógeno
4.
Environ Sci Technol ; 57(1): 486-497, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36537693

RESUMEN

Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Aerosoles y Gotitas Respiratorias , Humanos , Concentración de Iones de Hidrógeno , SARS-CoV-2 , Inactivación de Virus , Transmisión de Enfermedad Infecciosa
6.
Sci Total Environ ; 830: 154263, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35247406

RESUMEN

The importance of dust and biomass burning episodes on the atmospheric concentration of water-soluble reactive phosphate (SRP) was determined in the eastern Mediterranean. SRP was measured with a new rapid real-time automated analytical system with a time resolution of a few minutes per sample and with an extremely low detection limit. The average atmospheric concentration of SRP during the sampling campaign was estimated at 0.35 ± 0.25 (median 0.30) nmol P m-3. The maximum concentration of SRP (3.08 nmol P m-3) was recorded during an intense dust episode, and was almost ten times higher than the campaign average, confirming that Saharan dust was an important primary source of bioavailable P to the eastern Mediterranean, especially during the spring period when 60% of the events occurred. Predicted increases in the frequency and intensity of dust storms in the area will enhance the role of the atmosphere as a source of bioavailable P for the Mediterranean marine ecosystem. During the warm period, when Northerly winds prevailed, biomass burning processes contributed significantly to soluble phosphorus delivered from atmospheric sources to the eastern Mediterranean. These inputs during warm periods are especially important for the Eastern Mediterranean, where biological productivity is strongly limited by nutrient availability.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Contaminantes Atmosféricos/análisis , Biomasa , Polvo/análisis , Ecosistema , Monitoreo del Ambiente , Fosfatos/análisis , Agua
7.
Environ Sci Technol ; 53(12): 6747-6756, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31091086

RESUMEN

Oxidative potential (OP), which is the ability of certain components in atmospheric particles to generate reactive oxidative species (ROS) and deplete antioxidants in vivo, is a prevailing toxicological mechanism underlying the adverse health effects associated with exposure to ambient aerosols. While previous studies have identified the high OP of fresh biomass burning organic aerosols (BBOA), it remains unclear how it evolves throughout atmospheric transport. Using the dithiothreitol (DTT) assay as a measure of OP, a combination of field observations and laboratory experiments is used to determine how atmospheric aging transforms the intrinsic OP (OPmassDTT) of BBOA. For ambient BBOA collected during the fire seasons in Greece, OPmassDTT was observed to increase by a factor of 2.1 ± 0.9 for samples of atmospheric ages up to 68 h. Laboratory experiments indicate that aqueous photochemical aging (aging by UVB and UVA photolysis; as well as OH oxidation), as well as aging by ozone and atmospheric dilution can transform the OPmassDTT of the water-soluble fraction of wood smoke within 2 days of atmospheric transport. The results from this work suggest that the air quality impacts of biomass burning emissions can extend beyond regions near fire sites and should be accounted for.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles , Biomasa , Grecia , Estrés Oxidativo
8.
Anal Chim Acta ; 1067: 137-146, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31047145

RESUMEN

Carbohydrates are among the most abundant organic molecules in both aquatic and terrestrial ecosystems; however, very few studies have addressed their isotopic signature using compound-specific isotope analysis, which provides additional information on their origin (δ13C) and fate (Δ14C). In this study, semi-preparative liquid chromatography with refractive index detection (HPLC-RI) was employed to produce pure carbohydrate targets for subsequent offline δ13C and Δ14C isotopic analysis. δ13C analysis was performed by elemental analyzer-isotope ratio mass spectrometer (EA-IRMS) whereas Δ14C analysis was performed by an innovative measurement procedure based on the direct combustion of the isolated fractions using an elemental analyzer coupled to the gas source of a mini carbon dating system (AixMICADAS). In general, four successive purifications with Na+, Ca2+, Pb2+, and Ca2+ cation-exchange columns were sufficient to produce pure carbohydrates. These carbohydrates were subsequently identified using mass spectrometry by comparing their mass spectra with those of authentic standards. The applicability of the proposed method was tested on two different environmental samples comprising marine particulate organic matter (POM) and total suspended atmospheric particles (TSP). The obtained results revealed that for the marine POM sample, the δ13C values of the individual carbohydrates ranged from -18.5 to -16.8‰, except for levoglucosan and mannosan, which presented values of -27.2 and -26.2‰, respectively. For the TSP sample, the δ13C values ranged from -26.4 to -25.0‰. The galactose and glucose Δ14C values were 19 and 43‰, respectively, for the POM sample. On the other hand, the levoglucosan radiocarbon value was 33‰ for the TSP sample. These results suggest that these carbohydrates exhibit a modern age in both of these samples. Radiocarbon HPLC collection window blanks, measured after the addition of phthalic acid (14C free blank), ranged from -988 to -986‰ for the abovementioned compounds, indicating a very small background isotopic influence from the whole purification procedure. Overall, the proposed method does not require derivatization steps, produces extremely low blanks, and may be applied to different types of environmental samples.

9.
Anal Chem ; 88(14): 7163-70, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27301315

RESUMEN

We present a novel automated system for real-time measurements of water-soluble reactive phosphate (SRP) ions in atmospheric particles. Detection of SRP is based on molybdenum blue chemistry with Sn(II) chloride dihydrate reduction. The instrumentation consists of one particle-into-liquid sampler (PILS) coupled with a 250 cm path length liquid waveguide capillary cell (LWCC) and miniature fiber optic spectrometer, with detection wavelength set at 690 nm. The detection limit was 0.4 nM P, equivalent to 0.03 nmol P m(-3) in atmospheric particles. Comparison of SRP in collocate PM2.5 aerosol filter sampling with the PILS-LWCC on line system were in good agreement (n = 49, slope = 0.84, R(2) = 0.78). This novel technique offers at least an order of magnitude enhancement in sensitivity over existing approaches allowing for SRP measurements of unprecedented frequency (8 min), which will lead to greater understanding of the sources and impacts of SRP in atmospheric chemistry.

10.
Environ Sci Technol ; 50(13): 6912-20, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27286140

RESUMEN

Aerosol iron was examined in Saharan dust plumes using a combination of iron near-edge X-ray absorption spectroscopy and wet-chemical techniques. Aerosol samples were collected at three sites located in the Mediterranean, the Atlantic, and Bermuda to characterize iron at different atmospheric transport lengths and time scales. Iron(III) oxides were a component of aerosols at all sampling sites and dominated the aerosol iron in Mediterranean samples. In Atlantic samples, iron(II and III) sulfate, iron(III) phosphate, and iron(II) silicates were also contributors to aerosol composition. With increased atmospheric transport time, iron(II) sulfates are found to become more abundant, aerosol iron oxidation state became more reduced, and aerosol acidity increased. Atmospheric processing including acidic reactions and photoreduction likely influence the form of iron minerals and oxidation state in Saharan dust aerosols and contribute to increases in aerosol-iron solubility.


Asunto(s)
Polvo , Hierro/química , Aerosoles , Solubilidad , Espectroscopía de Absorción de Rayos X
11.
Sci Total Environ ; 409(22): 4796-801, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21903240

RESUMEN

The role of atmospheric urea on the biogeochemical cycle of Water Soluble Organic Nitrogen (WSON) in the Eastern Mediterranean was assessed by collecting and analyzing wet and dry deposition samples and size segregated aerosols during a one year period (2006). In rain water volume weighted mean (VWM) concentration of urea was found equal to 5.5µM. In atmospheric particles the average concentration of urea in coarse and fine mode was 0.9±1.9nmol N m(-3) (median 0.0nmol N m(-3)) and 2.2±3.0nmol N m(-3) (median 1.1nmol N m(-3)), respectively. The percentage contribution of urea to WSON fraction was 0% and 20% in coarse and fine particles respectively. On an annual basis 0.81mmol m(-2) and 1.78mmol m(-2) of urea were deposited via wet and dry deposition, contributing to WSON by 10% and 11% respectively. Regression analysis of urea with the main ions and trace metals measured in parallel suggest that soil and anthropogenic activities significantly contribute to atmospheric urea. Comparison of dry deposition of urea using size segregated deposition velocities with urea collected on a glass bead collector suggested the existence of significant fraction of urea in the gas phase.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente/estadística & datos numéricos , Urea/análisis , Aerosoles/análisis , Monitoreo del Ambiente/métodos , Región Mediterránea , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...