Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 86
1.
Int J Mol Sci ; 25(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38732237

NanoLuc-mediated bioluminescence resonance energy transfer (NanoBRET) has gained popularity for its ability to homogenously measure ligand binding to G protein-coupled receptors (GPCRs), including the subfamily of chemokine receptors. These receptors, such as ACKR3, CXCR4, CXCR3, play a crucial role in the regulation of the immune system, are associated with inflammatory diseases and cancer, and are seen as promising drug targets. The aim of this study was to optimize NanoBRET-based ligand binding to NLuc-ACKR3 and NLuc-CXCR4 using different fluorescently labeled chemokine CXCL12 analogs and their use in a multiplex NanoBRET binding assay of two chemokine receptors at the same time. The four fluorescent CXCL12 analogs (CXCL12-AZD488, -AZD546, -AZD594, -AZD647) showed high-affinity saturable binding to both NLuc-ACKR3 and NLuc-CXCR4, with relatively low levels of non-specific binding. Additionally, the binding of all AZDye-labeled CXCL12s to Nluc receptors was inhibited by pharmacologically relevant unlabeled chemokines and small molecules. The NanoBRET binding assay for CXCL10-AZD488 binding to Nluc-CXCR3 was also successfully established and successfully employed for the simultaneous measurement of the binding of unlabeled small molecules to NLuc-CXCR3 and NLuc-CXCR4. In conclusion, multiplexing the NanoBRET-based competition binding assay is a promising tool for testing unlabeled (small) molecules against multiple GPCRs simultaneously.


Chemokine CXCL12 , Protein Binding , Receptors, CXCR3 , Receptors, CXCR4 , Receptors, CXCR , Humans , Receptors, CXCR4/metabolism , Receptors, CXCR/metabolism , Receptors, CXCR/genetics , Chemokine CXCL12/metabolism , Receptors, CXCR3/metabolism , Bioluminescence Resonance Energy Transfer Techniques/methods , Ligands , Fluorescent Dyes/chemistry
2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38675496

The modulation of biological processes with light-sensitive chemical probes promises precise temporal and spatial control. Yet, the design and synthesis of suitable probes is a challenge for medicinal chemists. This article introduces a photocaging strategy designed to modulate the pharmacology of histamine H3 receptors (H3R) and H4 receptors (H4R). Employing the photoremovable group BODIPY as the caging entity for two agonist scaffolds-immepip and 4-methylhistamine-for H3R and H4R, respectively, we synthesized two BODIPY-caged compounds, 5 (VUF25657) and 6 (VUF25678), demonstrating 10-100-fold reduction in affinity for their respective receptors. Notably, the caged H3R agonist, VUF25657, exhibits approximately a 100-fold reduction in functional activity. The photo-uncaging of VUF25657 at 560 nm resulted in the release of immepip, thereby restoring binding affinity and potency in functional assays. This approach presents a promising method to achieve optical control of H3R receptor pharmacology.

3.
Nat Commun ; 15(1): 2493, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509098

The histamine H4 receptor (H4R) plays key role in immune cell function and is a highly valued target for treating allergic and inflammatory diseases. However, structural information of H4R remains elusive. Here, we report four cryo-EM structures of H4R/Gi complexes, with either histamine or synthetic agonists clobenpropit, VUF6884 and clozapine bound. Combined with mutagenesis, ligand binding and functional assays, the structural data reveal a distinct ligand binding mode where D943.32 and a π-π network determine the orientation of the positively charged group of ligands, while E1825.46, located at the opposite end of the ligand binding pocket, plays a key role in regulating receptor activity. The structural insight into H4R ligand binding allows us to identify mutants at E1825.46 for which the agonist clobenpropit acts as an inverse agonist and to correctly predict inverse agonism of a closely related analog with nanomolar potency. Together with the findings regarding receptor activation and Gi engagement, we establish a framework for understanding H4R signaling and provide a rational basis for designing novel antihistamines targeting H4R.


Drug Inverse Agonism , Histamine , Imidazoles , Thiourea/analogs & derivatives , Histamine/metabolism , Receptors, Histamine H4 , Receptors, G-Protein-Coupled/metabolism , Ligands , Receptors, Histamine/metabolism , Histamine Antagonists/pharmacology
4.
Mol Pharmacol ; 105(4): 301-312, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38346795

Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this ß-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based ß-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.


Chemokine CXCL12 , Receptors, CXCR4 , Humans , Receptors, CXCR4/metabolism , Chemokine CXCL12/metabolism , Chemokine CXCL11/metabolism , Signal Transduction , Ligands , Binding, Competitive
5.
Eur J Pharmacol ; 968: 176450, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38387718

The histamine H3 receptor (H3R) regulates as a presynaptic G protein-coupled receptor the release of histamine and other neurotransmitters in the brain, and is consequently a potential therapeutic target for neuronal disorders. The human H3R encodes for seven splice variants that vary in the length of intracellular loop 3 and/or the C-terminal tail but are all able to induce heterotrimeric Gi protein signaling. The last two decades H3R drug discovery and lead optimization has been exclusively focused on the 445 amino acids-long reference isoform H3R-445. In this study, we pharmacologically characterized for the first time all seven H3R isoforms by determining their binding affinities for reference histamine H3 receptor agonists and inverse agonists. The H3R-453, H3R-415, and H3R-413 isoforms display similar binding affinities for all ligands as the H3R-445. However, increased agonist binding affinities were observed for the three shorter isoforms H3R-329, H3R-365, and H3R-373, whereas inverse agonists such as the approved anti-narcolepsy drug pitolisant (Wakix®) displayed significantly decreased binding affinities for the latter two isoforms. This opposite change in binding affinity of agonist versus inverse agonists on H3R-365 and H3R-373 is associated with their higher constitutive activity in a cAMP biosensor assay as compared to the other five isoforms. The observed differences in pharmacology between longer and shorter H3R isoforms should be considered in future drug discovery programs.


Histamine , Receptors, Histamine H3 , Humans , Histamine/pharmacology , Receptors, Histamine H3/metabolism , Drug Inverse Agonism , Receptors, Histamine , Protein Isoforms , Histamine Agonists/pharmacology
6.
Brain ; 146(8): 3444-3454, 2023 08 01.
Article En | MEDLINE | ID: mdl-37143309

Brain oedema is a life-threatening complication of various neurological conditions. Understanding molecular mechanisms of brain volume regulation is critical for therapy development. Unique insight comes from monogenic diseases characterized by chronic brain oedema, of which megalencephalic leukoencephalopathy with subcortical cysts (MLC) is the prototype. Variants in MLC1 or GLIALCAM, encoding proteins involved in astrocyte volume regulation, are the main causes of MLC. In some patients, the genetic cause remains unknown. We performed genetic studies to identify novel gene variants in MLC patients, diagnosed by clinical and MRI features, without MLC1 or GLIALCAM variants. We determined subcellular localization of the related novel proteins in cells and in human brain tissue. We investigated functional consequences of the newly identified variants on volume regulation pathways using cell volume measurements, biochemical analysis and electrophysiology. We identified a novel homozygous variant in AQP4, encoding the water channel aquaporin-4, in two siblings, and two de novo heterozygous variants in GPRC5B, encoding the orphan G protein-coupled receptor GPRC5B, in three unrelated patients. The AQP4 variant disrupts membrane localization and thereby channel function. GPRC5B, like MLC1, GlialCAM and aquaporin-4, is expressed in astrocyte endfeet in human brain. Cell volume regulation is disrupted in GPRC5B patient-derived lymphoblasts. GPRC5B functionally interacts with ion channels involved in astrocyte volume regulation. In conclusion, we identify aquaporin-4 and GPRC5B as old and new players in genetic brain oedema. Our findings shed light on the protein complex involved in astrocyte volume regulation and identify GPRC5B as novel potentially druggable target for treating brain oedema.


Brain Edema , Hereditary Central Nervous System Demyelinating Diseases , Humans , Membrane Proteins/genetics , Brain Edema/genetics , Brain Edema/metabolism , Mutation/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Brain/metabolism , Astrocytes/metabolism , Aquaporin 4/genetics , Aquaporin 4/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
7.
Neuron ; 111(10): 1564-1576.e6, 2023 05 17.
Article En | MEDLINE | ID: mdl-36924772

Histamine (HA) is a key biogenic monoamine involved in a wide range of physiological and pathological processes in both the central and peripheral nervous systems. Because the ability to directly measure extracellular HA in real time will provide important insights into the functional role of HA in complex circuits under a variety of conditions, we developed a series of genetically encoded G-protein-coupled receptor-activation-based (GRAB) HA (GRABHA) sensors with good photostability, sub-second kinetics, nanomolar affinity, and high specificity. Using these GRABHA sensors, we measured electrical-stimulation-evoked HA release in acute brain slices with high spatiotemporal resolution. Moreover, we recorded HA release in the preoptic area of the hypothalamus and prefrontal cortex during the sleep-wake cycle in freely moving mice, finding distinct patterns of HA dynamics between these specific brain regions. Thus, GRABHA sensors are robust tools for measuring extracellular HA transmission in both physiological and pathological processes.


Histamine Release , Histamine , Animals , Mice , Brain , Hypothalamus , Receptors, G-Protein-Coupled
8.
Arch Pharm (Weinheim) ; 356(1): e2200451, 2023 Jan.
Article En | MEDLINE | ID: mdl-36310109

Histamine H3 receptor (H3 R) agonists without an imidazole moiety remain very scarce. Of these, ZEL-H16 (1) has been reported previously as a high-affinity non-imidazole H3 R (partial) agonist. Our structure-activity relationship analysis using derivatives of 1 identified both basic moieties as key interaction motifs and the distance of these from the central core as a determinant for H3 R affinity. However, in spite of the reported H3 R (partial) agonism, in our hands, 1 acts as an inverse agonist for Gαi signaling in a CRE-luciferase reporter gene assay and using an H3 R conformational sensor. Inverse agonism was also observed for all of the synthesized derivatives of 1. Docking studies and molecular dynamics simulations suggest ionic interactions/hydrogen bonds to H3 R residues D1143.32 and E2065.46 as essential interaction points.


Histamine , Receptors, Histamine H3 , Drug Inverse Agonism , Ligands , Histamine Agonists/pharmacology , Histamine Agonists/chemistry , Structure-Activity Relationship , Receptors, Histamine
9.
iScience ; 25(9): 104882, 2022 Sep 16.
Article En | MEDLINE | ID: mdl-36060054

In this study, we synthesized and evaluated new photoswitchable ligands for the beta-adrenergic receptors ß1-AR and ß2-AR, applying an azologization strategy to the first-generation beta-blocker propranolol. The resulting compounds (Opto-prop-1, -2, -3) have good photochemical properties with high levels of light-induced trans-cis isomerization (>94%) and good thermal stability (t 1/2 > 10 days) of the resulting cis-isomer in an aqueous buffer. Upon illumination with 360-nm light to PSS cis , large differences in binding affinities were observed for photoswitchable compounds at ß1-AR as well as ß2-AR. Notably, Opto-prop-2 (VUF17062) showed one of the largest optical shifts in binding affinities at the ß2-AR (587-fold, cis-active), as recorded so far for photoswitches of G protein-coupled receptors. We finally show the broad utility of Opto-prop-2 as a light-dependent competitive antagonist of the ß2-AR as shown with a conformational ß2-AR sensor, by the recruitment of downstream effector proteins and functional modulation of isolated adult rat cardiomyocytes.

10.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article En | MEDLINE | ID: mdl-35897787

Conformational biosensors to monitor the activation state of G protein-coupled receptors are a useful addition to the molecular pharmacology assay toolbox to characterize ligand efficacy at the level of receptor proteins instead of downstream signaling. We recently reported the initial characterization of a NanoBRET-based conformational histamine H3 receptor (H3R) biosensor that allowed the detection of both (partial) agonism and inverse agonism on living cells in a microplate reader assay format upon stimulation with H3R ligands. In the current study, we have further characterized this H3R biosensor on intact cells by monitoring the effect of consecutive ligand injections in time and evaluating its compatibility with photopharmacological ligands that contain a light-sensitive azobenzene moiety for photo-switching. In addition, we have validated the H3R biosensor in membrane preparations and found that observed potency values better correlated with binding affinity values that were measured in radioligand competition binding assays on membranes. Hence, the H3R conformational biosensor in membranes might be a ready-to-use, high-throughput alternative for radioligand binding assays that in addition can also detect ligand efficacies with comparable values as the intact cell assay.


Biosensing Techniques , Receptors, Histamine H3 , Cell Membrane/metabolism , Ligands , Receptors, Histamine , Receptors, Histamine H3/metabolism
11.
Curr Top Behav Neurosci ; 59: 3-28, 2022.
Article En | MEDLINE | ID: mdl-35851442

The histamine research community has in the last decade been very active and generated a number of exciting new chemical biology tools for the study of histamine receptors, their ligands, and their pharmacology. In this paper we describe the development of histamine receptor structural biology, the use of receptor conformational biosensors, and the development of new ligands for covalent or fluorescent labeling or for photopharmacological approaches (photocaging and photoswitching). These new tools allow new approaches to study histamine receptors and hopefully will lead to better insights in the molecular aspects of histamine receptors and their ligands.


Histamine , Receptors, Histamine , Biology , Histamine/pharmacology , Ligands , Receptors, Histamine/chemistry
12.
J Med Chem ; 65(12): 8258-8288, 2022 06 23.
Article En | MEDLINE | ID: mdl-35734860

The histamine H1 receptor (H1R) has recently been implicated in mediating cell proliferation and cancer progression; therefore, high-affinity H1R-selective fluorescent ligands are desirable tools for further investigation of this behavior in vitro and in vivo. We previously reported a H1R fluorescent ligand, bearing a peptide-linker, based on antagonist VUF13816 and sought to further explore structure-activity relationships (SARs) around the linker, orthostere, and fluorescent moieties. Here, we report a series of high-affinity H1R fluorescent ligands varying in peptide linker composition, orthosteric targeting moiety, and fluorophore. Incorporation of a boron-dipyrromethene (BODIPY) 630/650-based fluorophore conferred high binding affinity to our H1R fluorescent ligands, remarkably overriding the linker SAR observed in corresponding unlabeled congeners. Compound 31a, both potent and subtype-selective, enabled H1R visualization using confocal microscopy at a concentration of 10 nM. Molecular docking of 31a with the human H1R predicts that the optimized peptide linker makes interactions with key residues in the receptor.


Histamine , Receptors, Histamine H1 , Fluorescent Dyes/metabolism , Humans , Ligands , Molecular Docking Simulation , Peptides , Receptors, Histamine/metabolism , Receptors, Histamine H1/metabolism
13.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article En | MEDLINE | ID: mdl-35328605

The histamine H1 receptor (H1R) is a G protein-coupled receptor (GPCR) and plays a key role in allergic reactions upon activation by histamine which is locally released from mast cells and basophils. Consequently, H1R is a well-established therapeutic target for antihistamines that relieve allergy symptoms. H1R signals via heterotrimeric Gq proteins and is phosphorylated by GPCR kinase (GRK) subtypes 2, 5, and 6, consequently facilitating the subsequent recruitment of ß-arrestin1 and/or 2. Stimulation of a GPCR with structurally different agonists can result in preferential engagement of one or more of these intracellular signaling molecules. To evaluate this so-called biased agonism for H1R, bioluminescence resonance energy transfer (BRET)-based biosensors were applied to measure H1R signaling through heterotrimeric Gq proteins, second messengers (inositol 1,4,5-triphosphate and Ca2+), and receptor-protein interactions (GRKs and ß-arrestins) in response to histamine, 2-phenylhistamines, and histaprodifens in a similar cellular background. Although differences in efficacy were observed for these agonists between some functional readouts as compared to reference agonist histamine, subsequent data analysis using an operational model of agonism revealed only signaling bias of the agonist Br-phHA-HA in recruiting ß-arrestin2 to H1R over Gq biosensor activation.


Biosensing Techniques , Histamine , Energy Transfer , G-Protein-Coupled Receptor Kinases/metabolism , GTP-Binding Proteins/metabolism , HEK293 Cells , Histamine/pharmacology , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine H1/metabolism , beta-Arrestins/metabolism
14.
Curr Opin Pharmacol ; 63: 102192, 2022 04.
Article En | MEDLINE | ID: mdl-35255451

The field of photopharmacology of Class A GPCR ligands has recently attracted attention. In this review we analyze 31 papers on currently available photoswitchable ligands for Class A GPCRs. Using the six most recurring terms of all combined paper abstracts, one can extract the overarching goal of this area of research: "Photoswitchable ligands control receptor activity with light" (represented in the TOC graphic). We analyze the design, photochemistry and pharmacology of the photoswitchable ligands. Trends, challenges and limitations will be discussed. A number of efficient photoswitchable ligands that allow optical modulation of GPCR function in various in vitro assays are presented. Moreover, optical modulation of in vivo GPCR function is within reach and the first reports to this end are highlighted.


Receptors, G-Protein-Coupled , Signal Transduction , Humans , Ligands
15.
Biomolecules ; 11(8)2021 07 30.
Article En | MEDLINE | ID: mdl-34439793

The histamine H4 receptor (H4R) is a G protein-coupled receptor that is predominantly expressed on immune cells and considered to be an important drug target for various inflammatory disorders. Like most GPCRs, the H4R activates G proteins and recruits ß-arrestins upon phosphorylation by GPCR kinases to induce cellular signaling in response to agonist stimulation. However, in the last decade, novel GPCR-interacting proteins have been identified that may regulate GPCR functioning. In this study, a split-ubiquitin membrane yeast two-hybrid assay was used to identify H4R interactors in a Jurkat T cell line cDNA library. Forty-three novel H4R interactors were identified, of which 17 have also been previously observed in MYTH screens to interact with other GPCR subtypes. The interaction of H4R with the tetraspanin TSPAN4 was confirmed in transfected cells using bioluminescence resonance energy transfer, bimolecular fluorescence complementation, and co-immunoprecipitation. Histamine stimulation reduced the interaction between H4R and TSPAN4, but TSPAN4 did not affect H4R-mediated G protein signaling. Nonetheless, the identification of novel GPCR interactors by MYTH is a starting point to further investigate the regulation of GPCR signaling.


Receptors, Histamine H4/metabolism , Tetraspanins/metabolism , Bioluminescence Resonance Energy Transfer Techniques , Gene Expression , Gene Library , HEK293 Cells , Histamine/metabolism , Histamine/pharmacology , Humans , Jurkat Cells , Phosphorylation/drug effects , Protein Binding , Protein Interaction Mapping , Receptors, Histamine H4/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Tetraspanins/genetics , Transgenes , Two-Hybrid System Techniques
16.
Methods Mol Biol ; 2268: 233-248, 2021.
Article En | MEDLINE | ID: mdl-34085273

Cytosolic ß-arrestins are key regulators of G protein-coupled receptors (GPCRs) by sterically uncoupling G protein activation, facilitating receptor internalization, and/or acting as G protein-independent signaling scaffolds. The current awareness that GPCR ligands may display bias toward G protein signaling or ß-arrestin recruitment makes ß-arrestin recruitment assays important additions to the drug discovery toolbox. This chapter describes two NanoLuc-based methods to monitor ß-arrestin2 recruitment to the human histamine H1 receptor by measuring bioluminescence resonance energy transfer and enzyme-fragment complementation in real-time on living cells with reasonable high throughput. In addition to the detection of agonism, both assay formats can be used to qualitatively evaluate the binding kinetics of antihistamines on the human histamine H1 receptor.


Bioluminescence Resonance Energy Transfer Techniques/methods , Luciferases/metabolism , Nanotechnology/methods , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine H1/metabolism , Single-Cell Analysis/methods , beta-Arrestin 2/metabolism , HEK293 Cells , Humans , Ligands , Molecular Imaging/methods , Protein Binding , Signal Transduction
17.
ACS Omega ; 6(19): 12755-12768, 2021 May 18.
Article En | MEDLINE | ID: mdl-34056427

There is an increasing interest in guiding hit optimization by considering the target binding kinetics of ligands. However, compared to conventional structure-activity relationships, structure-kinetics relationships have not been as thoroughly explored, even for well-studied archetypical drug targets such as the histamine H1 receptor (H1R), a member of the family A G-protein coupled receptor. In this study, we show that the binding kinetics of H1R antagonists at the H1R is dependent on the cyclicity of both the aromatic head group and the amine moiety of H1R ligands, the chemotypes that are characteristic for the first-generation H1R antagonists. Fusing the two aromatic rings of H1R ligands into one tricyclic aromatic head group prolongs the H1R residence time for benchmark H1R ligands as well as for tailored synthetic analogues. The effect of constraining the aromatic rings and the basic amines is systematically explored, leading to a coherent series and detailed discussions of structure-kinetics relationships. This study shows that cyclicity has a pronounced effect on the binding kinetics.

18.
Int J Mol Sci ; 22(7)2021 Apr 02.
Article En | MEDLINE | ID: mdl-33918180

The Exome Aggregation Consortium has collected the protein-encoding DNA sequences of almost 61,000 unrelated humans. Analysis of this dataset for G protein-coupled receptor (GPCR) proteins (available at GPCRdb) revealed a total of 463 naturally occurring genetic missense variations in the histamine receptor family. In this research, we have analyzed the distribution of these missense variations in the four histamine receptor subtypes concerning structural segments and sites important for GPCR function. Four missense variants R1273.52×52H, R13934.57×57H, R4096.29×29H, and E4106.30×30K, were selected for the histamine H1 receptor (H1R) that were hypothesized to affect receptor activity by interfering with the interaction pattern of the highly conserved D(E)RY motif, the so-called ionic lock. The E4106.30×30K missense variant displays higher constitutive activity in G protein signaling as compared to wild-type H1R, whereas the opposite was observed for R1273.52×52H, R13934.57×57H, and R4096.29×29H. The E4106.30×30K missense variant displays a higher affinity for the endogenous agonist histamine than wild-type H1R, whereas antagonist affinity was not affected. These data support the hypothesis that the E4106.30×30K mutation shifts the equilibrium towards active conformations. The study of these selected missense variants gives additional insight into the structural basis of H1R activation and, moreover, highlights that missense variants can result in pharmacologically different behavior as compared to wild-type receptors and should consequently be considered in the drug discovery process.


Receptors, Histamine H1/genetics , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Mutation, Missense , Receptors, Histamine H1/metabolism
19.
Cells ; 10(3)2021 03 11.
Article En | MEDLINE | ID: mdl-33799570

Background: The atypical chemokine receptor 3 (ACKR3) belongs to the superfamily of G protein-coupled receptors (GPCRs). Unlike classical GPCRs, this receptor does not activate G proteins in most cell types but recruits ß-arrestins upon activation. ACKR3 plays an important role in cancer and vascular diseases. As recruitment of ß-arrestins is triggered by phosphorylation of the C-terminal tail of GPCRs, we studied the role of different potential phosphorylation sites within the ACKR3 C-tail to further delineate the molecular mechanism of internalization and trafficking of this GPCR. Methods: We used various bioluminescence and fluorescence resonance energy transfer-based sensors and techniques in Human Embryonic Kidney (HEK) 293T cells expressing WT or phosphorylation site mutants of ACKR3 to measure CXCL12-induced recruitment of ß-arrestins and G-protein-coupled receptor kinases (GRKs), receptor internalization and trafficking. Results: Upon CXCL12 stimulation, ACKR3 recruits both ß-arrestin 1 and 2 with equivalent kinetic profiles. We identified interactions with GRK2, 3 and 5, with GRK2 and 3 being important for ß-arrestin recruitment. Upon activation, ACKR3 internalizes and recycles back to the cell membrane. We demonstrate that ß-arrestin recruitment to the receptor is mainly determined by a single cluster of phosphorylated residues on the C-tail of ACKR3, and that residue T352 and in part S355 are important residues for ß-arrestin1 recruitment. Phosphorylation of the C-tail appears essential for ligand-induced internalization and important for differential ß-arrestin recruitment. GRK2 and 3 play a key role in receptor internalization. Moreover, ACKR3 can still internalize when ß-arrestin recruitment is impaired or in the absence of ß-arrestins, using alternative internalization pathways. Our data indicate that distinct residues within the C-tail of ACKR3 differentially regulate CXCL12-induced ß-arrestin recruitment, ACKR3 trafficking and internalization.


Endocytosis , Receptors, CXCR/metabolism , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , Biosensing Techniques , Chemokine CXCL12/pharmacology , Fluorescence Resonance Energy Transfer , G-Protein-Coupled Receptor Kinase 2/metabolism , G-Protein-Coupled Receptor Kinase 3/metabolism , HEK293 Cells , Humans , Kinetics , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Receptors, CXCR/agonists , Receptors, CXCR/genetics , beta-Arrestin 1/genetics , beta-Arrestin 2/genetics
20.
Anal Chem ; 92(21): 14509-14516, 2020 11 03.
Article En | MEDLINE | ID: mdl-33054153

Real-time label-free techniques are used to profile G protein-coupled receptor (GPCR) signaling pathways in living cells. However, interpreting the label-free signal responses is challenging, and previously reported methods do not reliably separate pathways from each other. In this study, a continuous angular-scanning surface plasmon resonance (SPR) technique is utilized for measuring label-free GPCR signal profiles. We show how the continuous angular-scanning ability, measuring up to nine real-time label-free parameters simultaneously, results in more information-rich label-free signal profiles for different GPCR pathways, providing a more accurate pathway separation. For this, we measured real-time full-angular SPR response curves for Gs, Gq, and Gi signaling pathways in living cells. By selecting two of the most prominent label-free parameters: the full SPR curve angular and intensity shifts, we present how this analysis approach can separate each of the three signaling pathways in a straightforward single-step analysis setup, without concurrent use of signal inhibitors or other response modulating compounds.


Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Surface Plasmon Resonance/methods , Animals , CHO Cells , Cricetulus , Humans
...