Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2311480121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38354263

RESUMEN

Cyanobacteria and evolutionarily related chloroplasts of algae and plants possess unique RNA polymerases (RNAPs) with characteristics that distinguish them from canonical bacterial RNAPs. The largest subunit of cyanobacterial RNAP (cyRNAP) is divided into two polypeptides, ß'1 and ß'2, and contains the largest known lineage-specific insertion domain, Si3, located in the middle of the trigger loop and spanning approximately half of the ß'2 subunit. In this study, we present the X-ray crystal structure of Si3 and the cryo-EM structures of the cyRNAP transcription elongation complex plus the NusG factor with and without incoming nucleoside triphosphate (iNTP) bound at the active site. Si3 has a well-ordered and elongated shape that exceeds the length of the main body of cyRNAP, fits into cavities of cyRNAP in the absence of iNTP bound at the active site and shields the binding site of secondary channel-binding proteins such as Gre and DksA. A small transition from the trigger loop to the trigger helix upon iNTP binding results in a large swing motion of Si3; however, this transition does not affect the catalytic activity of cyRNAP due to its minimal contact with cyRNAP, NusG, or DNA. This study provides a structural framework for understanding the evolutionary significance of these features unique to cyRNAP and chloroplast RNAP and may provide insights into the molecular mechanism of transcription in specific environment of photosynthetic organisms and organelle.


Asunto(s)
Cianobacterias , Proteínas de Escherichia coli , Transcripción Genética , Escherichia coli/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , ADN/metabolismo , Factores de Elongación de Péptidos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Escherichia coli/metabolismo
2.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260627

RESUMEN

Cyanobacteria and evolutionarily related chloroplasts of algae and plants possess unique RNA polymerases (RNAPs) with characteristics that distinguish from canonical bacterial RNAPs. The largest subunit of cyanobacterial RNAP (cyRNAP) is divided into two polypeptides, ß'1 and ß'2, and contains the largest known lineage-specific insertion domain, Si3, located in the middle of the trigger loop and spans approximately half of the ß'2 subunit. In this study, we present the X-ray crystal structure of Si3 and the cryo-EM structures of the cyRNAP transcription elongation complex plus the NusG factor with and without incoming nucleoside triphosphate (iNTP) bound at the active site. Si3 has a well-ordered and elongated shape that exceeds the length of the main body of cyRNAP, fits into cavities of cyRNAP and shields the binding site of secondary channel-binding proteins such as Gre and DksA. A small transition from the trigger loop to the trigger helix upon iNTP binding at the active site results in a large swing motion of Si3; however, this transition does not affect the catalytic activity of cyRNAP due to its minimal contact with cyRNAP, NusG or DNA. This study provides a structural framework for understanding the evolutionary significance of these features unique to cyRNAP and chloroplast RNAP and may provide insights into the molecular mechanism of transcription in specific environment of photosynthetic organisms.

3.
Proc Natl Acad Sci U S A ; 120(7): e2218516120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745813

RESUMEN

NusG is a transcription elongation factor that stimulates transcription pausing in Gram+ bacteria including B. subtilis by sequence-specific interaction with a conserved pause-inducing -11TTNTTT-6 motif found in the non-template DNA (ntDNA) strand within the transcription bubble. To reveal the structural basis of NusG-dependent pausing, we determined a cryo-EM structure of a paused transcription complex (PTC) containing RNA polymerase (RNAP), NusG, and the TTNTTT motif in the ntDNA strand. The interaction of NusG with the ntDNA strand rearranges the transcription bubble by positioning three consecutive T residues in a cleft between NusG and the ß-lobe domain of RNAP. We revealed that the RNAP swivel module rotation (swiveling), which widens (swiveled state) and narrows (non-swiveled state) a cleft between NusG and the ß-lobe, is an intrinsic motion of RNAP and is directly linked to trigger loop (TL) folding, an essential conformational change of all cellular RNAPs for the RNA synthesis reaction. We also determined cryo-EM structures of RNAP escaping from the paused transcription state. These structures revealed the NusG-dependent pausing mechanism by which NusG-ntDNA interaction inhibits the transition from swiveled to non-swiveled states, thereby preventing TL folding and RNA synthesis allosterically. This motion is also reduced by the formation of an RNA hairpin within the RNA exit channel. Thus, the pause half-life can be modulated by the strength of the NusG-ntDNA interaction and/or the stability of the RNA hairpin. NusG residues that interact with the TTNTTT motif are widely conserved in bacteria, suggesting that NusG-dependent pausing is widespread.


Asunto(s)
Proteínas de Escherichia coli , Transcripción Genética , Factores de Transcripción/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ADN , Bacterias/metabolismo , ARN , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química
4.
Nat Commun ; 14(1): 484, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717560

RESUMEN

Self-assembly of macromolecules into higher-order symmetric structures is fundamental for the regulation of biological processes. Higher-order symmetric structure self-assembly by the gene expression machinery, such as bacterial DNA-dependent RNA polymerase (RNAP), has never been reported before. Here, we show that the stress-response σB factor from the human pathogen, Mycobacterium tuberculosis, induces the RNAP holoenzyme oligomerization into a supramolecular complex composed of eight RNAP units. Cryo-electron microscopy revealed a pseudo-symmetric structure of the RNAP octamer in which RNAP protomers are captured in an auto-inhibited state and display an open-clamp conformation. The structure shows that σB is sequestered by the RNAP flap and clamp domains. The transcriptional activator RbpA prevented octamer formation by promoting the initiation-competent RNAP conformation. Our results reveal that a non-conserved region of σ is an allosteric controller of transcription initiation and demonstrate how basal transcription factors can regulate gene expression by modulating the RNAP holoenzyme assembly and hibernation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Mycobacterium tuberculosis , Factor sigma , Humanos , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/metabolismo , Holoenzimas/metabolismo , Mycobacterium tuberculosis/genética , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Nat Microbiol ; 7(11): 1918-1931, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192538

RESUMEN

The transcriptome-wide contributions of Rho-dependent and intrinsic (Rho-independent) transcription termination mechanisms in bacteria are unclear. By sequencing released transcripts in a wild-type strain and strains containing deficiencies in NusA, NusG and/or Rho (10 strains), we produced an atlas of terminators for the model Gram-positive bacterium Bacillus subtilis. We found that NusA and NusG stimulate 77% and 19% of all intrinsic terminators, respectively, and that both proteins participate in Rho-dependent termination. We also show that Rho stimulates termination at 10% of the intrinsic terminators in vivo. We recapitulated Rho-stimulated intrinsic termination at 5 terminators in vitro and found that Rho requires the KOW domain of NusG to stimulate this process at one of these terminators. Computational analyses of our atlas using RNAstructure, MEME suite and DiffLogo, combined with in vitro transcription experiments, revealed that Rho stimulates intrinsic terminators with weak hairpins and/or U-rich tracts by remodelling the RNA upstream of the intrinsic terminator to prevent the formation of RNA structures that could otherwise compete with the terminator hairpin. We also identified 56 putative examples of 'hybrid Rho-dependent termination', wherein classical Rho-dependent termination occurs after readthrough of a Rho-stimulated intrinsic terminator.


Asunto(s)
Bacillus subtilis , Transcripción Genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , ARN/metabolismo
6.
World J Microbiol Biotechnol ; 34(10): 150, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30255239

RESUMEN

This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein-ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2-3 fold and 6-7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.


Asunto(s)
Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Mutagénesis , Withania/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Flavonoides , Cinética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Alineación de Secuencia , Análisis de Secuencia , Homología de Secuencia de Aminoácido
7.
Int J Biol Macromol ; 79: 661-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26027607

RESUMEN

Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 µM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+).


Asunto(s)
Bacopa/química , Hemiterpenos/química , Magnesio/química , Ácido Mevalónico/análogos & derivados , Compuestos Organofosforados/química , Proteínas de Plantas/química , Bacopa/enzimología , Carboxiliasas , Cationes Bivalentes , Clonación Molecular , Pruebas de Enzimas , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hemiterpenos/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Ácido Mevalónico/química , Ácido Mevalónico/metabolismo , Peso Molecular , Compuestos Organofosforados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
8.
Physiol Mol Biol Plants ; 21(2): 261-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25964718

RESUMEN

Bacopa monniera is an important source of metabolites with pharmaceutical value. It has been regarded as a valuable medicinal plant and its entire commercial requirement is met from wild natural population. Recently, metabolic engineering has emerged as an important solution for sustained supply of assured and quality raw material for the production of active principles. Present report describes efficient in vitro multiplication and transformation method for genetic manipulation of this species. MS medium supplemented with 2 mgl(-1) BA and 0.2 mgl(-1) IAA was found optimum for maximum shoot regeneration (98.33 %) from in vitro leaves with 2-3 longitudinal cuts. Agrobacterium tumefaciens-mediated transformation method was used for generating transgenic B. monniera plants. Putative transformants were confirmed by GUS assay and PCR based confirmation of hptII gene. DNA blot analysis showed single copy insertion of transgene cassette. An average of 87.5 % of the regenerated shoots were found PCR positive for hptII gene and GUS activity was detected in leaves of transgenic shoots at a frequency of 82.5 % The efficient multiple shoots regeneration system described herein may help in mass production of B. monniera plant. Also, the high frequency transformation protocol described here can be used for genetic engineering of B. monniera for enhancement of its pharmaceutically important metabolites.

9.
Physiol Mol Biol Plants ; 21(2): 197-205, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25931776

RESUMEN

Aboitic stress such as drought and salinity are class of major threats, which plants undergo through their lifetime. Lignin deposition is one of the responses to such abiotic stresses. The gene encoding Cinnamoyl CoA Reductase (CCR) is a key gene for lignin biosynthesis, which has been shown to be over-expressed under stress conditions. In the present study, developing seedlings of Leucaena leucocephala (Vernacular name: Subabul, White popinac) were treated with 1 % mannitol and 200 mM NaCl to mimic drought and salinity stress conditions, respectively. Enzyme linked immunosorbant assay (ELISA) based expression pattern of CCR protein was monitored coupled with Phlorogucinol/HCl activity staining of lignin in transverse sections of developing L. leucocephala seedlings under stress. Our result suggests a differential lignification pattern in developing root and stem under stress conditions. Increase in lignification was observed in mannitol treated stems and corresponding CCR protein accumulation was also higher than control and salt stress treated samples. On the contrary CCR protein was lower in NaCl treated stems and corresponding lignin deposition was also low. Developing root tissue showed a high level of CCR content and lignin deposition than stem samples under all conditions tested. Overall result suggested that lignin accumulation was not affected much in case of developing root however developing stems were significantly affected under drought and salinity stress condition.

10.
Int J Biol Macromol ; 72: 776-83, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25281875

RESUMEN

Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 µM and 719.1 pKat µg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2.


Asunto(s)
Bacopa/química , Bacopa/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Recombinantes , Secuencia de Aminoácidos , Bacopa/genética , Clonación Molecular , ADN Complementario , Activación Enzimática , Expresión Génica , Concentración de Iones de Hidrógeno , Iones/química , Cinética , Metales/química , Datos de Secuencia Molecular , Peso Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Temperatura
11.
Mol Biol Rep ; 41(7): 4675-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24664316

RESUMEN

Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.


Asunto(s)
Bacopa/enzimología , Benzopiranos/metabolismo , Expresión Génica , Glicosiltransferasas/química , Proteínas de Plantas/química , Secuencias de Aminoácidos , Bacopa/clasificación , Bacopa/efectos de los fármacos , Bacopa/genética , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , India , Lycium/química , Lycium/enzimología , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/enzimología , Tallos de la Planta/genética , Plantas Medicinales , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácido Salicílico/farmacología , Alineación de Secuencia , Especificidad por Sustrato
12.
Appl Biochem Biotechnol ; 170(3): 729-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23609908

RESUMEN

Glycosylation of flavonoids is mediated by family 1 uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs). Until date, there are few reports on functionally characterized flavonoid glycosyltransferases from Withania somnifera. In this study, we cloned the glycosyltransferase gene from W. somnifera (UGT73A16) showing 85-92 % homology with UGTs from other plants. UGT73A16 was expressed as a His(6)-tagged fusion protein in Escherichia coli. Several compounds, including flavonoids, were screened as potential substrates for UGT73A16. HPLC analysis and hypsochromic shift indicated that UGT73A16 transfers a glucose molecule to several different flavonoids. Based on kinetic parameters, UGT73A16 shows more catalytic efficiency towards naringenin. Here, we explored UGT73A16 of W. somnifera as whole cell catalyst in E. coli. We used flavonoids (genistein, apigenin, kaempferol, naringenin, biochanin A, and daidzein) as substrates for this study. More than 95 % of the glucoside products were released into the medium, facilitating their isolation. Glycosylation of substrates occurred on the 7- and 3-hydroxyl group of the aglycone. UGT73A16 also displayed regiospecific glucosyl transfer activity towards 3-hydroxy flavone compound, which is the backbone of all flavonols and also for a chemically synthesized compound, not found naturally. The present study generates essential knowledge and molecular as well as biochemical tools that allow the verification of UGT73A16 in glycosylation.


Asunto(s)
Flavonoides/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Withania/enzimología , Clonación Molecular , Escherichia coli/genética , Glucosiltransferasas/aislamiento & purificación , Filogenia , Especificidad por Sustrato , Withania/genética
13.
Physiol Mol Biol Plants ; 19(4): 547-53, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24431524

RESUMEN

Triterpenoid saponins are the class of secondary metabolites, synthesized via isoprenoid pathway. Oxidosqualene cyclases (OSCs) catalyzes the cyclization of 2, 3-oxidosqualene to various triterpene skeletons, the first committed step in triterpenoid biosynthesis. A full-length oxidosqualene cyclase cDNA from Bacopa monniera (BmOSC) was isolated and characterized. The open reading frame (ORF) of BmOSC consists of 2,292 bp, encoding 764 amino acid residues with an apparent molecular mass of 87.62 kDa and theoretical pI 6.21. It contained four QxxxxxW motifs, one Asp-Cys-Thr-Ala-Glu (DCTAE) motif which is highly conserved among the triterpene synthases and another MWCYCR motif involved in the formation of triterpenoid skeletons. The deduced amino acid sequence of BmOSC shares 80.5 % & 71.8 % identity and 89.7 % & 83.5 % similarity with Olea europaea mixed amyrin synthase and Panax notoginseng dammarenediol synthase respectively. Phylogenetic analysis revealed that BmOSC is closely related with other plant OSCs. Quantitative real-time PCR (qRT-PCR) data showed that BmOSC is expressed in all tissues examined with higher expression in stem and leaves as compared to roots and floral parts.

14.
Mol Biol Rep ; 39(9): 8803-12, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22718506

RESUMEN

Squalene synthase (SQS: EC 2.5.1.21) is a potential branch point regulatory enzyme and represents the first committed step to diverge the carbon flux from the main isoprenoid pathway towards sterol biosynthesis. In the present study, cloning and characterization of Withania somnifera squalene synthase (WsSQS) cDNA was investigated subsequently followed by its heterologous expression and preliminary enzyme activity. Two different types of WsSQS cDNA clones (WsSQS1and WsSQS2) were identified that contained an open reading frames of 1,236 and 1,242 bp encoding polypeptides of 412 and 414 amino acids respectively. Both WsSQS isoforms share 99 % similarity and identity with each other. WsSQS deduced amino acids sequences, when compared with SQS of other plant species, showed maximum similarity and identity with Capsicum annuum followed by Solanum tuberosum and Nicotiana tabacum. To obtain soluble recombinant enzymes, 24 hydrophobic amino acids were deleted from the carboxy terminus and expressed as 6X His-Tag fusion protein in Escherichia coli. Approximately 43 kDa recombinant protein was purified using Ni-NTA affinity chromatography and checked on SDS-PAGE. Preliminary activity of the purified enzymes was determined and the products were analyzed by gas chromatograph-mass spectrometer (GC-MS). Quantitative real-time PCR (qRT-PCR) analysis showed that WsSQS expresses more in young leaves than mature leaves, stem and root.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/genética , Farnesil Difosfato Farnesil Transferasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Withania/genética , Withania/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , ADN Complementario , Escherichia coli/genética , Escherichia coli/metabolismo , Farnesil Difosfato Farnesil Transferasa/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Withania/clasificación
15.
Plant Physiol Biochem ; 49(2): 138-45, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21123078

RESUMEN

Removal of lignin is a major hurdle for obtaining good quality pulp. Leucaena leucocephala (subabul) is extensively used in paper industry in India; therefore, as a first step to generate transgenic plants with low lignin content, cDNA and genomic clones of CCR gene were isolated and characterized. The cDNA encoding CCR (EC 1.2.1.44) was designated as Ll-CCR; the sequence analysis revealed an Open Reading Frame (ORF) of 1005 bp. Phylogenetic analysis showed that Ll-CCR sequence is highly homologous to CCRs from other dicot plants. The 2992 bp genomic clone of Leucaena CCR consists of 5 exons and 4 introns. The haploid genome of L. leucocephala contains two copies as revealed by DNA blot hybridization. Ll-CCR gene was over-expressed in Escherichia coli, which showed a molecular mass of approximately 38 kDa. Protein blot analysis revealed that Ll-CCR protein is expressed at higher levels in root and in stem, but undetectable in leaf tissues. Expression of CCR gene in Leucaena increased up to 15 d in case of roots and stem as revealed by QRT-PCR studies in 0-15 d old seedlings. ELISA based studies of extractable CCR protein corroborated with QRT-PCR data. CCR protein was immuno-cytolocalized around xylem tissue. Lignin estimation and expression studies of 5, 10 and 15 d old stem and root suggest that CCR expression correlates with quantity of lignin produced, which makes it a good target for antisense down regulation for producing designer species for paper industry.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Fabaceae/enzimología , Plantones/enzimología , Aldehído Oxidorreductasas/clasificación , Aldehído Oxidorreductasas/genética , Western Blotting , Biología Computacional , Ensayo de Inmunoadsorción Enzimática , Dosificación de Gen/genética , Lignina/metabolismo , Filogenia , Reacción en Cadena de la Polimerasa
16.
Physiol Mol Biol Plants ; 15(4): 311-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23572941

RESUMEN

Leucaena leucocephala is a fast growing multipurpose legume tree used for forage, leaf manure, paper and pulp. Lignin in Leucaena pulp adversely influences the quality of paper produced. Developing transgenic Leucaena with altered lignin by genetic engineering demands an optimized regeneration system. The present study deals with optimization of regeneration system for L. leucocephala cv. K636. Multiple shoot induction from the cotyledonary nodes of L. leucocephala was studied in response to cytokinins, thidiazuron (TDZ) and N(6)-benzyladenine (BA) supplemented in half strength MS (½-MS) medium and also their effect on in vitro rooting of the regenerated shoots. Multiple shoots were induced from cotyledonary nodes at varied frequencies depending on the type and concentration of cytokinin used in the medium. TDZ was found to induce more number of shoots per explant than BA, with a maximum of 7 shoots at an optimum concentration of 0.23 µM. Further increase in TDZ concentration resulted in reduced shoot length and fasciation of the shoots. Liquid pulse treatment of the explants with TDZ did not improve the shoot production further but improved the subsequent rooting of the shoots that regenerated. Regenerated shoots successfully rooted on ½-MS medium supplemented with 0.54 µM α-naphthaleneacetic acid (NAA). Rooted shoots of Leucaena were transferred to coco-peat and hardened plantlets showed ≥ 90 % establishment in the green house.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...