Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 316
1.
Hortic Res ; 11(4): uhae059, 2024 Apr.
Article En | MEDLINE | ID: mdl-38689699

In Chinese cabbage, rosette leaves expose their adaxial side to the light converting light energy into chemical energy, acting as a source for the growth of the leafy head. In the leafy head, the outer heading leaves expose their abaxial side to the light while the inner leaves are shielded from the light and have become a sink organ of the growing Chinese cabbage plant. Interestingly, variation in several ad/abaxial polarity genes is associated with the typical leafy head morphotype. The initiation of leaf primordia and the establishment of leaf ad/abaxial polarity are essential steps in the initiation of marginal meristem activity leading to leaf formation. Understanding the molecular genetic mechanisms of leaf primordia formation, polar differentiation, and leaf expansion is thus relevant to understand leafy head formation. As Brassica's are mesa-hexaploids, many genes have multiple paralogues, complicating analysis of the genetic regulation of leaf development. In this study, we used laser dissection of Chinese cabbage leaf primordia and the shoot apical meristem (SAM) to compare gene expression profiles between both adaxial and abaxial sides and the SAM aiming to capture transcriptome changes underlying leaf primordia development. We highlight genes with roles in hormone pathways and transcription factors. We also assessed gene expression gradients along expanded leaf blades from the same plants to analyze regulatory links between SAM, leaf primordia and the expanding rosette leaf. The catalogue of differentially expressed genes provides insights in gene expression patterns involved in leaf development and form a starting point to unravel leafy head formation.

2.
Theor Appl Genet ; 137(4): 79, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38472376

KEY MESSAGE: Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive. Here, three diploid full-sib populations were genotyped with an amplicon sequencing approach and phenotyped for unreduced pollen production across two growing seasons. We identified two minor-effect and three major-effect QTLs regulating this trait. The two QTLs with the largest effect displayed a recessive inheritance and an additive interaction. Both QTLs co-localised with genes encoding for putative AtJAS homologs, a key regulator of meiosis II spindle orientation in Arabidopsis thaliana. The function of these candidate genes is consistent with the cytological phenotype of mis-oriented metaphase II plates observed in the parental clones. The alleles associated with elevated levels of unreduced pollen showed deleterious mutation events: an exonic transposon insert causing a premature stop, and an amino acid change within a highly conserved domain. Taken together, our findings shed light on the natural variation underlying unreduced pollen production in potato and will facilitate interploidy breeding by enabling marker-assisted selection for this trait.


Arabidopsis , Solanum tuberosum , Plant Breeding , Pollen/genetics , Genotype , Arabidopsis/genetics , Meiosis
3.
Plants (Basel) ; 13(5)2024 Feb 27.
Article En | MEDLINE | ID: mdl-38475502

This study aims to categorize the morphological changes during cabbage (B. oleracea ssp. capitata) development, seedling, rosette, folding, and heading, and to elucidate the cellular mechanisms of the leaf curvature, essential for the formation of the leafy head. We followed the growth of two cabbage cultivars with distinct head shapes (round and pointed) and one non-heading collard cultivar; we phenotyped the size and volume of the whole plant as well as the size, shape, and curvature of the leaves during growth. By integrating these phenotypic data, we determined the four vegetative stages for both cabbages. The histological phenotypes of microtome sections from five distinct leaf positions of the rosette, folding, and heading leaves at two timepoints during leaf growth were quantified and revealed variations in cellular parameters among leaf types, between leaf positions, and between the adaxial and abaxial sides. We identified two synergistic cellular mechanisms contributing to the curvature of heading leaves: differential growth across the leaf blade, with increased growth at the leaf's center relative to the margins; and the increased expansion of the spongy parenchyma layer compared to the palisade parenchyma layer, resulting in the direction of the curvature, which is inwards. These two processes together contribute to the typical leafy heads of cabbages.

4.
BMC Genomics ; 25(1): 274, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38475714

BACKGROUND: Tuber starch and steroidal glycoalkaloid (SGA)-related traits have been consistently prioritized in potato breeding, while allelic variation pattern of genes that underlie these traits is less explored. RESULTS: Here, we focused on the genes involved in two important metabolic pathways in the potato: starch metabolism and SGA biosynthesis. We identified 119 genes consisting of 81 involved in starch metabolism and 38 in the biosynthesis of steroidal glycoalkaloids, and discovered 96,166 allelic variants among 2,169 gene haplotypes in six autotetraploid potato genomes. Comparative analyses revealed an uneven distribution of allelic variants among gene haplotypes and that the vast majority of deleterious mutations in these genes are retained in heterozygous state in the autotetraploid potato genomes. Leveraging full-length cDNA sequencing data, we find that approximately 70% of haplotypes of the 119 genes are transcribable. Population genetic analyses identify starch and SGA biosynthetic genes that are potentially conserved or diverged between potato varieties with varying starch or SGA content. CONCLUSIONS: These results deepen the understanding of haplotypic diversity within functionally important genes in autotetraploid genomes and may facilitate functional characterization of genes or haplotypes contributing to traits related to starch and SGA in potato.


Solanum tuberosum , Solanum tuberosum/genetics , Starch/metabolism , Plant Breeding , Alleles , Phenotype , Steroids
5.
G3 (Bethesda) ; 14(4)2024 04 03.
Article En | MEDLINE | ID: mdl-38243613

Multienvironment genomic prediction was applied to tetraploid potato using 147 potato varieties, tested for 2 years, in 3 locations representative of 3 distinct regions in Europe. Different prediction scenarios were investigated to help breeders predict genotypic performance in the regions from one year to the next, for genotypes that were tested this year (scenario 1), as well as new genotypes (scenario 3). In scenario 2, we predicted new genotypes for any one of the 6 trials, using all the information that is available. The choice of prediction model required assessment of the variance-covariance matrix in a mixed model that takes into account heterogeneity of genetic variances and correlations. This was done for each analyzed trait (tuber weight, tuber length, and dry matter) where examples of both limited and higher degrees of heterogeneity was observed. This explains why dry matter did not need complex multienvironment modeling to combine environments and increase prediction ability, while prediction in tuber weight, improved only when models were flexible enough to capture the heterogeneous variances and covariances between environments. We also found that the prediction abilities in a target trial condition decreased, if trials with a low genetic correlation to the target were included when training the model. Genomic prediction in tetraploid potato can work once there is clarity about the prediction scenario, a suitable training set is created, and a multienvironment prediction model is chosen based on the patterns of G×E indicated by the genetic variances and covariances.


Solanum tuberosum , Solanum tuberosum/genetics , Tetraploidy , Phenotype , Genotype , Genomics
6.
New Phytol ; 242(6): 2541-2554, 2024 Jun.
Article En | MEDLINE | ID: mdl-38197194

In potato, maturity is assessed by leaf senescence, which, in turn, affects yield and tuber quality traits. Previously, we showed that the CYCLING DOF FACTOR1 (StCDF1) locus controls leaf maturity in addition to the timing of tuberization. Here, we provide evidence that StCDF1 controls senescence onset separately from senescence progression and the total life cycle duration. We used molecular-biological approaches (DNA-Affinity Purification Sequencing) to identify a direct downstream target of StCDF1, named ORESARA1 (StORE1S02), which is a NAC transcription factor acting as a positive senescence regulator. By overexpressing StORE1S02 in the long life cycle genotype, early onset of senescence was shown, but the total life cycle remained long. At the same time, StORE1S02 knockdown lines have a delayed senescence onset. Furthermore, we show that StORE1 proteins play an indirect role in sugar transport from source to sink by regulating expression of SWEET sugar efflux transporters during leaf senescence. This study clarifies the important link between tuber formation and senescence and provides insight into the molecular regulatory network of potato leaf senescence onset. We propose a complex role of StCDF1 in the regulation of potato plant senescence.


Gene Expression Regulation, Plant , Plant Leaves , Plant Proteins , Plant Senescence , Solanum tuberosum , Solanum tuberosum/genetics , Solanum tuberosum/physiology , Solanum tuberosum/growth & development , Solanum tuberosum/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Senescence/genetics , Plants, Genetically Modified , Time Factors , Plant Tubers/genetics , Plant Tubers/growth & development , Plant Tubers/physiology , Sugars/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Biological Transport
7.
Genetics ; 226(1)2024 Jan 03.
Article En | MEDLINE | ID: mdl-37943687

The balanced segregation of homologous chromosomes during meiosis is essential for fertility and is mediated by crossovers (COs). A strong reduction of CO number leads to the unpairing of homologous chromosomes after the withdrawal of the synaptonemal complex. This results in the random segregation of univalents during meiosis I and ultimately to the production of unbalanced and sterile gametes. However, if CO shortage is combined with another meiotic alteration that restitutes the first meiotic division, then uniform and balanced unreduced male gametes, essentially composed of nonrecombinant homologs, are produced. This mitosis-like division is of interest to breeders because it transmits most of the parental heterozygosity to the gametes. In potato, CO shortage, a recessive trait previously referred to as desynapsis, was tentatively mapped to chromosome 8. In this article, we have fine-mapped the position of the CO shortage locus and identified StMSH4, an essential component of the class I CO pathway, as the most likely candidate gene. A 7 base-pair insertion in the second exon of StMSH4 was found to be associated with CO shortage in our mapping population. We also identified a second allele with a 3,820 base-pair insertion and confirmed that both alleles cannot complement each other. Such nonfunctional alleles appear to be common in potato cultivars. More than half of the varieties we tested are carriers of mutational load at the StMSH4 locus. With this new information, breeders can choose to remove alleles associated with CO shortage from their germplasm to improve fertility or to use them to produce highly uniform unreduced male gametes in alternative breeding schemes.


Infertility , Solanum tuberosum , Alleles , Solanum tuberosum/genetics , Plant Breeding , Meiosis/genetics , Pollen/genetics , Infertility/genetics
8.
Elife ; 122023 09 26.
Article En | MEDLINE | ID: mdl-37751372

Plants with innate disease and pest resistance can contribute to more sustainable agriculture. Natural defence compounds produced by plants have the potential to provide a general protective effect against pathogens and pests, but they are not a primary target in resistance breeding. Here, we identified a wild relative of potato, Solanum commersonii, that provides us with unique insight in the role of glycoalkaloids in plant immunity. We cloned two atypical resistance genes that provide resistance to Alternaria solani and Colorado potato beetle through the production of tetraose steroidal glycoalkaloids (SGA). Moreover, we provide in vitro evidence to show that these compounds have potential against a range of different (potato pathogenic) fungi. This research links structural variation in SGAs to resistance against potato diseases and pests. Further research on the biosynthesis of plant defence compounds in different tissues, their toxicity, and the mechanisms for detoxification, can aid the effective use of such compounds to improve sustainability of our food production.


Farmers often rely on pesticides to protect their crops from disease and pests. However, these chemicals are harmful to the environment and more sustainable strategies are needed. This is particularly true for a disease known as the early blight of potato, which is primarily treated using fungicides that stop the fungal pathogen responsible for the infection (Alternaria solani) from growing. An alternative approach is to harness the natural defence systems that plants already have in place to protect themselves. Like humans, plants have an immune system which can detect and destroy specific pathogens. On top of this, they release defence compounds that are generally toxic to pests and microbes, stopping them from infiltrating and causing an infection. In 2021, a group of researchers discovered a wild relative of the potato, known as Solanum commersonii, with strong resistance to early blight disease. Here, Wolters et al. ­ including some of the researchers involved in the 2021 study ­ set out to find how this plant defends itself from the fungus A. solani. The team found that two closely linked genes are responsible for the resistant behaviour of S. commersonii, which both encode enzymes known as glycosyltransferases. Further experiments revealed that the enzymes protect S. commersonii from early blight disease by modifying steroidal glycoalkaloids, typical defence compounds found in potato and other plants from the same family. The glycosyltransferases alter glycoalkaloids in S. commersonii by adding a sugar group to a specific part of the compound called glycone. Wolters et al. found that the glycoalkaloids from S. commersonii were able to slow the growth of other fungal pathogens that harm potatoes when tested in the laboratory. They also made plants resistant to another common destroyer of crops, the Colorado potato beetle. These findings could help farmers breed potatoes and other crops that are more resistant to early blight disease and Colorado potato beetle, as well as potentially other fungi and pests. However, further experiments are needed to investigate how these glycone-modified glycoalkaloids affect humans, and how variants of glycoalkaloids are produced and degraded in different parts of the plants. Acquiring this knowledge will help to employ these defence compounds in a safe and effective manner.


Coleoptera , Solanum tuberosum , Animals , Plant Breeding , Alternaria , Steroids
10.
PLoS One ; 18(8): e0289984, 2023.
Article En | MEDLINE | ID: mdl-37590309

Thrips are a serious pest in many crops. In onion cultivation, Thrips tabaci is the most important, but not the only thrips species causing damage. We investigated which thrips species affects onion and related species worldwide, how much genetic variation there is within T. tabaci populations, and how this evolves. Furthermore, we determined the reproductive mode and the correlation between the genetic and geographic distances. Thrips samples from infested onions or related species were obtained from 14 different locations worldwide. Species and haplotypes were determined through DNA barcoding with the mitochondrial Cytochrome Oxidase subunit I (COI) gene. Thrips tabaci was the most commonly observed species, but Scirtothrips dorsalis, Thrips palmi, Frankliniella intonsa, Frankliniella occidentalis and Frankliniella tenuicornis were also found, especially at the beginning of the growing seasons and depending on the location. The Nei's genetic distance within T. tabaci was less than 5% and the haplotypes were clustered into two phylogenetic groups, each linked to a specific mode of reproduction, thelytokous or arrhenotokous. Thelytokous thrips were more common and more widely distributed than arrhenotokous thrips. A high percentage of heteroplasmy was detected in the arrhenotokous group. Heteroplasmic thrips were only found in populations where thelytokous and arrhenotokous were present in sympatry. Some T. tabaci haplotypes were present in high frequency at several sampled locations. No correlation was found between the genetic and geographic distances, which points to anthropic activities spreading thrips haplotypes throughout the world.


Allium , Thysanoptera , Animals , Thysanoptera/genetics , Phylogeny , Onions , Heteroplasmy
11.
Science ; 381(6660): 891-897, 2023 08 25.
Article En | MEDLINE | ID: mdl-37616352

Plant cell surface pattern recognition receptors (PRRs) and intracellular immune receptors cooperate to provide immunity to microbial infection. Both receptor families have coevolved at an accelerated rate, but the evolution and diversification of PRRs is poorly understood. We have isolated potato surface receptor Pep-13 receptor unit (PERU) that senses Pep-13, a conserved immunogenic peptide pattern from plant pathogenic Phytophthora species. PERU, a leucine-rich repeat receptor kinase, is a bona fide PRR that binds Pep-13 and enhances immunity to Phytophthora infestans infection. Diversification in ligand binding specificities of PERU can be traced to sympatric wild tuber-bearing Solanum populations in the Central Andes. Our study reveals the evolution of cell surface immune receptor alleles in wild potato populations that recognize ligand variants not recognized by others.


Phytophthora infestans , Plant Immunity , Receptors, Immunologic , Solanum tuberosum , Ligands , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/immunology , Solanum tuberosum/microbiology
12.
Sci Data ; 10(1): 457, 2023 07 13.
Article En | MEDLINE | ID: mdl-37443110

Plant phenotyping experiments are conducted under a variety of experimental parameters and settings for diverse purposes. The data they produce is heterogeneous, complicated, often poorly documented and, as a result, difficult to reuse. Meeting societal needs (nutrition, crop adaptation and stability) requires more efficient methods toward data integration and reuse. In this work, we examine what "making data FAIR" entails, and investigate the benefits and the struggles not only of reusing FAIR data, but also making data FAIR using genotype by environment and QTL by environment interactions for developmental traits in potato as a case study. We assume the role of a scientist discovering a phenotypic dataset on a FAIR data point, verifying the existence of related datasets with environmental data, acquiring both and integrating them. We report and discuss the challenges and the potential for reusability and reproducibility of FAIRifying existing datasets, using metadata standards such as MIAPPE, that were encountered in this process.


Plant Breeding , Plants , Genotype , Phenotype , Plants/genetics , Reproducibility of Results , Datasets as Topic
13.
Front Plant Sci ; 14: 1082094, 2023.
Article En | MEDLINE | ID: mdl-37324660

Tomato bacterial canker caused by Clavibacter michiganensis (Cm) is considered to be one of the most destructive bacterial diseases of tomato. To date, no resistance to the pathogen has been identified. While several molecular studies have identified (Cm) bacterial factors involved in disease development, the plant genes and mechanisms associated with susceptibility of tomato to the bacterium remain largely unknown. Here, we show for the first time that tomato gene SlWAT1 is a susceptibility gene to Cm. We inactivated the gene SlWAT1 through RNAi and CRISPR/Cas9 to study changes in tomato susceptibility to Cm. Furthermore, we analysed the role of the gene in the molecular interaction with the pathogen. Our findings demonstrate that SlWAT1 functions as an S gene to genetically diverse Cm strains. Inactivation of SlWAT1 reduced free auxin contents and ethylene synthesis in tomato stems and suppressed the expression of specific bacterial virulence factors. However, CRISPR/Cas9 slwat1 mutants exhibited severe growth defects. The observed reduced susceptibility is possibly a result of downregulation of bacterial virulence factors and reduced auxin contents in transgenic plants. This shows that inactivation of an S gene may affect the expression of bacterial virulence factors.

14.
Front Plant Sci ; 14: 1130723, 2023.
Article En | MEDLINE | ID: mdl-37008458

The family of Geminiviridae consists of more than 500 circular single-stranded (ss) DNA viral species that can infect numerous dicot and monocot plants. Geminiviruses replicate their genome in the nucleus of a plant cell, taking advantage of the host's DNA replication machinery. For converting their DNA into double-stranded DNA, and subsequent replication, these viruses rely on host DNA polymerases. However, the priming of the very first step of this process, i.e. the conversion of incoming circular ssDNA into a dsDNA molecule, has remained elusive for almost 30 years. In this study, sequencing of melon (Cucumis melo) accession K18 carrying the Tomato leaf curl New Delhi virus (ToLCNDV) recessive resistance quantitative trait locus (QTL) in chromosome 11, and analyses of DNA sequence data from 100 melon genomes, showed a conservation of a shared mutation in the DNA Primase Large subunit (PRiL) of all accessions that exhibited resistance upon a challenge with ToLCNDV. Silencing of (native) Nicotiana benthamiana PriL and subsequent challenging with three different geminiviruses showed a severe reduction in titers of all three viruses, altogether emphasizing an important role of PRiL in geminiviral replication. A model is presented explaining the role of PriL during initiation of geminiviral DNA replication, i.e. as a regulatory subunit of primase that generates an RNA primer at the onset of DNA replication in analogy to DNA Primase-mediated initiation of DNA replication in all living organisms.

15.
Front Plant Sci ; 14: 1100416, 2023.
Article En | MEDLINE | ID: mdl-37035068

Candidate genes (CG) for Botrytis cinerea resistance described in literature were mapped on gerbera linkage maps for which several QTL for Botrytis resistance had been found previously using a rapid, low-cost platform for SNP genotyping. In total, 29 CGs were mapped in either of two mapping populations. Four CGs were mapped within the previous identified QTL intervals and three co-localized with QTL. Two of these CGs for resistance against B. cinerea, PG1 (polygalacturonase gene) and sit (sitiens, ABA-aldehyde oxidase gene) that mapped in QTL regions for the ray floret disease resistance test were studied in detail. Virus-induced gene silencing (VIGS) was used for gene function analysis to determine the CGs' role in gerbera resistance to Botrytis. Ray florets, of which the CGs were silenced, showed a significantly delayed growth of lesions upon Botrytis infection compared to controls. Combining QTL analysis, candidate gene mapping and VIGS showed to be an useful combination to identify possible causal genes and for understanding the molecular mechanisms of Botrytis resistance in gerbera. The two genes seem to act as partial S-genes and are likely among the determining genes leading to the variation observed for B. cinerea resistance in gerbera.

16.
Front Plant Sci ; 14: 1111322, 2023.
Article En | MEDLINE | ID: mdl-37025130

To explore specific components of resistance against the tomato-adapted powdery mildew pathogen Pseudoidium neolycopersici (On) in the model plant Arabidopsis, we performed a disease assay in 123 accessions. When testing the resistance in the F1 from crossings between resistant accessions with susceptible Col-0 or Sha, only the progeny of the cross between accession Bla-6 and Col-0 displayed a completely resistant phenotype. The resistance in Bla-6 is known to be specific for Pseudoidium neolycopersici. QTL analysis and fine-mapping through several rounds of recombinant screenings allowed us to locate a major resistance QTL in an interval on chromosome 1, containing two candidate genes and an intergenic insertion. Via CRISPR/Cas9 targeted mutagenesis, we could show that knocking out the ZED-1 RELATED KINASE 13 (ZRK13) gene compromised the On resistance in Bla-6. Several polymorphisms are observed in the ZRK13 allelic variant of Bla-6 when compared to the Col-0 protein.

17.
Funct Integr Genomics ; 23(1): 47, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36692535

Climate change seriously impacts global agriculture, with rising temperatures directly affecting the yield. Vegetables are an essential part of daily human consumption and thus have importance among all agricultural crops. The human population is increasing daily, so there is a need for alternative ways which can be helpful in maximizing the harvestable yield of vegetables. The increase in temperature directly affects the plants' biochemical and molecular processes; having a significant impact on quality and yield. Breeding for climate-resilient crops with good yields takes a long time and lots of breeding efforts. However, with the advent of new omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, the efficiency and efficacy of unearthing information on pathways associated with high-temperature stress resilience has improved in many of the vegetable crops. Besides omics, the use of genomics-assisted breeding and new breeding approaches such as gene editing and speed breeding allow creation of modern vegetable cultivars that are more resilient to high temperatures. Collectively, these approaches will shorten the time to create and release novel vegetable varieties to meet growing demands for productivity and quality. This review discusses the effects of heat stress on vegetables and highlights recent research with a focus on how omics and genome editing can produce temperature-resilient vegetables more efficiently and faster.


Plant Breeding , Vegetables , Humans , Vegetables/genetics , Crops, Agricultural/genetics , Genomics , Proteomics
18.
Plant Biotechnol J ; 21(2): 369-380, 2023 02.
Article En | MEDLINE | ID: mdl-36333116

Kiwifruit (Actinidia spp) is a woody, perennial and deciduous vine. In this genus, there are multiple ploidy levels but the main cultivated cultivars are polyploid. Despite the availability of many genomic resources in kiwifruit, SNP genotyping is still a challenge given these different levels of polyploidy. Recent advances in SNP array technologies have offered a high-throughput genotyping platform for genome-wide DNA polymorphisms. In this study, we developed a high-density SNP genotyping array to facilitate genetic studies and breeding applications in kiwifruit. SNP discovery was performed by genome-wide DNA sequencing of 40 kiwifruit genotypes. The identified SNPs were stringently filtered for sequence quality, predicted conversion performance and distribution over the available Actinidia chinensis genome. A total of 134 729 unique SNPs were put on the array. The array was evaluated by genotyping 400 kiwifruit individuals. We performed a multidimensional scaling analysis to assess the diversity of kiwifruit germplasm, showing that the array was effective to distinguish kiwifruit accessions. Using a tetraploid F1 population, we constructed an integrated linkage map covering 3060.9 cM across 29 linkage groups and performed QTL analysis for the sex locus that has been identified on Linkage Group 3 (LG3) in Actinidia arguta. Finally, our dataset presented evidence of tetrasomic inheritance with partial preferential pairing in A. arguta. In conclusion, we developed and evaluated a 135K SNP genotyping array for kiwifruit. It has the advantage of a comprehensive design that can be an effective tool in genetic studies and breeding applications in this high-value crop.


Actinidia , Genotype , Actinidia/genetics , Polymorphism, Single Nucleotide/genetics , Plant Breeding , Chromosome Mapping/methods , Polyploidy
19.
Plant Mol Biol ; 111(3): 291-307, 2023 Feb.
Article En | MEDLINE | ID: mdl-36469200

KEY MESSAGE: We identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm. Higher plants accumlate large amounts of seed storage proteins (SSPs). However, mechanisms underlying SSP trafficking are largely unknown, especially the ER-Golgi anterograde process. Here, we showed that a rice glutelin precursor accumulation13 (gpa13) mutant exhibited floury endosperm and overaccumulated glutelin precursors, which phenocopied the reported RNAi-Sar1abc line. Molecular cloning revealed that the gpa13 allele encodes a mutated Sar1c (mSar1c) with a deletion of two conserved amino acids Pro134 and Try135. Knockdown or knockout of Sar1c alone caused no obvious phenotype, while overexpression of mSar1c resulted in seedling lethality similar to the gpa13 mutant. Transient expression experiment in tobacco combined with subcellular fractionation experiment in gpa13 demonstrated that the expression of mSar1c affects the subcellular distribution of all Sar1 isoforms and Sec23c. In addition, mSar1c failed to interact with COPII component Sec23. Conversely, mSar1c competed with Sar1a/b/d to interact with guanine nucleotide exchange factor Sec12. Together, we identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm.


Oryza , Seed Storage Proteins , Seed Storage Proteins/metabolism , Oryza/genetics , Protein Transport/genetics , Glutens/genetics , Endoplasmic Reticulum/metabolism
20.
Plant Cell Environ ; 46(10): 3012-3022, 2023 10.
Article En | MEDLINE | ID: mdl-35822392

Plants have evolved to deal with different stresses during plant growth, relying on complex interactions or crosstalk between multiple signalling pathways in plant cells. In this sophisticated regulatory network, Ca2+ transients in the cytosol ([Ca2+ ]cyt ) act as major physiological signals to initiate appropriate responses. The CALCINEURIN B-LIKE PROTEIN (CBL)-CBL-INTERACTING PROTEIN KINASE (CIPK) network relays physiological signals characterised by [Ca2+ ]cyt transients during plant development and in response to environmental changes. Many studies are aimed at elucidating the role of the CBL-CIPK network in plant growth and stress responses. This review discusses the involvement of the CBL-CIPK pathways in two levels of crosstalk between plant development and stress adaptation: direct crosstalk through interaction with regulatory proteins, and indirect crosstalk through adaptation of correlated physiological processes that affect both plant development and stress responses. This review thus provides novel insights into the physiological roles of the CBL-CIPK network in plant growth and stress adaptation.


Arabidopsis , Protein Kinases , Protein Kinases/metabolism , Plant Proteins/metabolism , Arabidopsis/metabolism , Calcium-Binding Proteins/metabolism , Plant Development
...