Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Arch Microbiol ; 206(4): 161, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483627

Brazilian biomes are important sources for environmental microorganisms, including efficient metabolic machineries, like actinomycetes. These bacteria are known for their abilities to produce many bioactive compounds, including enzymes with multiple industrial applications. The present work aimed to evaluate lignocellulolytic abilities of actinomycetes isolated from soil and rhizosphere samples collected at Caatinga, Atlantic and Amazon Forest. Laccase (Lac), lignin peroxidase (LiP), manganese peroxidase (MnP) and cellulase were evaluated for their efficiency. These enzymes have an essential role in lignin decomposition, through oxidation of phenolic and non-phenolic compounds, as well as enzymatic hydrolysis of vegetal biomass. In this sense, a total of 173 actinomycetes were investigated. Eleven (11) of them were selected by their enzymatic performance. The actinomycete AC166 displayed some activity in all analysed scenarios in terms of Lac, MnP and LiP activity, while AC171 was selected as the most promising strain, showing the following activities: 29.7 U.L-1 for Lac; 2.5 U.L-1 for LiP and 23 U.L-1 for MnP. Cellulolytic activities were evaluated at two pH conditions, 4.8 and 7.4, obtaining the following results: 25 U.L-1 and 71 U.L-1, respectively. Thermostability (4, 30 and 60 o C) and salinity concentrations (0 to 4 M) and pH variation (2.0 to 9.0) stabilities of the obtained LiP and Lac enzymatic extracts were also verified. The actinomycete strain AC171 displayed an adaptable response in distinct pH and salt profiles, indicating that bacterial LiP was some halophilic type. Additionally, the strain AC149 produced an alkali and extreme halophilic lignin peroxidase, which are promising profiles for their future application under lignocellulosic biomass at bioethanol biorefineries.


Laccase , Lignin , Lignin/metabolism , Laccase/metabolism , Oxidation-Reduction , Forests , Brazil
2.
Microbiol Res ; 265: 127178, 2022 Dec.
Article En | MEDLINE | ID: mdl-36113308

Amazonian forest conversion into agricultural and livestock areas is considered one of the activities that contribute most to the emission of greenhouse gases, including methane. Biogenic methane production is mainly performed by methanogenic Archaea, which underscores the importance of understanding the drivers shaping microbial communities involved in the methane cycling and changes in methane metabolism. Here, we aimed to investigate the composition and structure of bacterial and archaeal communities in tropical soils in response to land-use changes, emphasizing the methanogenic communities. We collected soil samples from primary forest, pasture, and secondary forest of the Amazonian region and used a strategy based on the enrichment of the methanogenic community with three different methanogenic substrates followed by measurements of methane emission, quantification of mcrA gene copies by qPCR, and total 16 S rRNA gene sequencing (metataxonomics). We observed variations in the structure of bacterial and archaeal communities of soils under different uses. The richness of methanogenic communities was higher in pasture than forest soils and this richness remained during the incubation period, and as a consequence, the enrichment induced earlier methane emission in pastures-derived samples. Furthermore, pastures enrichments exhibited methanogenic archaea networks more complex than primary and secondary forests. In conclusion, pastures harbor a richer and more responsive methanogenic community than forest samples, suggesting that conversion of forest areas to pasture may boost methane emission.


Euryarchaeota , Greenhouse Gases , Archaea , Bacteria , Brazil , Euryarchaeota/genetics , Greenhouse Gases/analysis , Greenhouse Gases/metabolism , Methane , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Microbiology
...