Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 13(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38927239

RESUMEN

As reported by the World Health Organization (WHO), about 10-20% of people have experienced mid- to long-term effects following SARS-CoV-2 infection, collectively referred to as post-COVID-19 condition or long-COVID, including some neurovegetative symptoms. Numerous findings have suggested that the onset of these neurovegetative symptoms upon viral infection may be caused by the production of autoantibodies through molecular mimicry phenomena. Accordingly, we had previously demonstrated that 22 of the human proteins sharing putatively immunogenic peptides with SARS-CoV-2 proteins are expressed in the dorsal motor nucleus and nucleus ambiguous. Therefore, if molecular mimicry occurs following severe forms of COVID-19, there could be transitory or permanent damage in some vagal structures, resulting in a lower vagal tone and all the related clinical signs. We investigated the presence of autoantibodies against two proteins of vagal nuclei sharing a peptide with SARS-CoV-2 spike glycoprotein using an immunoassay test on blood obtained from patients with cardiorespiratory symptoms in patients affected by ongoing symptomatic COVID-19 (long-COVID), subjects vaccinated without a history of SARS-CoV-2 infection, and subjects not vaccinated without a history of SARS-CoV-2 infection. Interestingly, putative autoantibodies were present in both long-COVID-19 and vaccinated groups, opening interesting questions about pathogenic mechanisms of the disease.

2.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891798

RESUMEN

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by self-immune tolerance breakdown and the production of autoantibodies, causing the deposition of immune complexes and triggering inflammation and immune-mediated damage. SLE pathogenesis involves genetic predisposition and a combination of environmental factors. Clinical manifestations are variable, making an early diagnosis challenging. Heat shock proteins (Hsps), belonging to the chaperone system, interact with the immune system, acting as pro-inflammatory factors, autoantigens, as well as immune tolerance promoters. Increased levels of some Hsps and the production of autoantibodies against them are correlated with SLE onset and progression. The production of these autoantibodies has been attributed to molecular mimicry, occurring upon viral and bacterial infections, since they are evolutionary highly conserved. Gut microbiota dysbiosis has been associated with the occurrence and severity of SLE. Numerous findings suggest that proteins and metabolites of commensal bacteria can mimic autoantigens, inducing autoimmunity, because of molecular mimicry. Here, we propose that shared epitopes between human Hsps and those of gut commensal bacteria cause the production of anti-Hsp autoantibodies that cross-react with human molecules, contributing to SLE pathogenesis. Thus, the involvement of the chaperone system, gut microbiota dysbiosis, and molecular mimicry in SLE ought to be coordinately studied.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Lupus Eritematoso Sistémico , Imitación Molecular , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/microbiología , Lupus Eritematoso Sistémico/metabolismo , Humanos , Imitación Molecular/inmunología , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/inmunología , Proteínas de Choque Térmico/inmunología , Proteínas de Choque Térmico/metabolismo , Autoanticuerpos/inmunología , Animales , Autoantígenos/inmunología , Autoantígenos/metabolismo , Autoinmunidad
3.
Biology (Basel) ; 13(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38785778

RESUMEN

BACKGROUND: Dysbiosis, influenced by poor diet or stress, is associated with various systemic diseases. Probiotic supplements are recognized for stabilizing gut microbiota and alleviating gastrointestinal issues, like irritable bowel syndrome (IBS). This study focused on the tryptophan pathways, which are important for the regulation of serotonin levels, and on host physiology and behavior regulation. METHODS: Nanovesicles were isolated from the plasma of subjects with chronic diarrhea, both before and after 60 days of consuming a probiotic mix (Acronelle®, Bromatech S.r.l., Milan, Italy). These nanovesicles were assessed for the presence of Tryptophan 2,3-dioxygenase 2 (TDO 2). Furthermore, the probiotics mix, in combination with H2O2, was used to treat HT29 cells to explore its cytoprotective and anti-stress effect. RESULTS: In vivo, levels of TDO 2 in nanovesicles were enhanced in the blood after probiotic treatment, suggesting a role in the gut-brain axis. In the in vitro model, a typical H2O2-induced stress effect occurred, which the probiotics mix was able to recover, showing a cytoprotective effect. The probiotics mix treatment significantly reduced the heat shock protein 60 kDa levels and was able to preserve intestinal integrity and barrier function by restoring the expression and redistribution of tight junction proteins. Moreover, the probiotics mix increased the expression of TDO 2 and serotonin receptors. CONCLUSIONS: This study provides evidence for the gut-brain axis mediation by nanovesicles, influencing central nervous system function.

4.
Cells ; 12(11)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37296619

RESUMEN

Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Vesículas Extracelulares , Humanos , Contaminación del Aire/efectos adversos , Estrés Fisiológico/genética , ARN no Traducido/genética
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768350

RESUMEN

Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies.


Asunto(s)
Chaperonina con TCP-1 , Chaperonas Moleculares , Simulación de Dinámica Molecular , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/química , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Mutación
6.
Front Mol Biosci ; 9: 887336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720129

RESUMEN

Recognition of diseases associated with mutations of the chaperone system genes, e.g., chaperonopathies, is on the rise. Hereditary and clinical aspects are established, but the impact of the mutation on the chaperone molecule and the mechanisms underpinning the tissue abnormalities are not. Here, histological features of skeletal muscle from a patient with a severe, early onset, distal motor neuropathy, carrying a mutation on the CCT5 subunit (MUT) were examined in comparison with normal muscle (CTR). The MUT muscle was considerably modified; atrophy of fibers and disruption of the tissue architecture were prominent, with many fibers in apoptosis. CCT5 was diversely present in the sarcolemma, cytoplasm, and nuclei in MUT and in CTR and was also in the extracellular space; it colocalized with CCT1. In MUT, the signal of myosin appeared slightly increased, and actin slightly decreased as compared with CTR. Desmin was considerably delocalized in MUT, appearing with abnormal patterns and in precipitates. Alpha-B-crystallin and Hsp90 occurred at lower signals in MUT than in CTR muscle, appearing also in precipitates with desmin. The abnormal features in MUT may be the consequence of inactivity, malnutrition, denervation, and failure of protein homeostasis. The latter could be at least in part caused by malfunction of the CCT complex with the mutant CCT5 subunit. This is suggested by the results of the in silico analyses of the mutant CCT5 molecule, which revealed various abnormalities when compared with the wild-type counterpart, mostly affecting the apical domain and potentially impairing chaperoning functions. Thus, analysis of mutated CCT5 in vitro and in vivo is anticipated to provide additional insights on subunit involvement in neuromuscular disorders.

7.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445306

RESUMEN

Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising candidates as useful biomarkers for diagnosis and patient monitoring, and as targets for developing novel therapies. Components of the CS are also promising as biomarkers and as therapeutic targets, since they participate in epileptogenic pathways and in cytoprotective mechanisms in various epileptogenic brain areas, even if what they do and how is not yet clear. The data in this review should help in the identification of molecular targets among the discussed miRNAs and CS components for research aiming at understanding epileptogenic mechanisms and, subsequently, develop means for predicting/preventing seizures and treating the disease.


Asunto(s)
Epilepsia/metabolismo , Proteínas de Choque Térmico/metabolismo , MicroARNs/metabolismo , Animales , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/patología , Proteínas de Choque Térmico/genética , Humanos , MicroARNs/genética
8.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919591

RESUMEN

Thyroid cancers are the most common of the endocrine system malignancies and progress must be made in the areas of differential diagnosis and treatment to improve patient management. Advances in the understanding of carcinogenic mechanisms have occurred in various fronts, including studies of the chaperone system (CS). Components of the CS are found to be quantitatively increased or decreased, and some correlations have been established between the quantitative changes and tumor type, prognosis, and response to treatment. These correlations provide the basis for identifying distinctive patterns useful in differential diagnosis and for planning experiments aiming at elucidating the role of the CS in tumorigenesis. Here, we discuss studies of the CS components in various thyroid cancers (TC). The chaperones belonging to the families of the small heat-shock proteins Hsp70 and Hsp90 and the chaperonin of Group I, Hsp60, have been quantified mostly by immunohistochemistry and Western blot in tumor and normal control tissues and in extracellular vesicles. Distinctive differences were revealed between the various thyroid tumor types. The most frequent finding was an increase in the chaperones, which can be attributed to the augmented need for chaperones the tumor cells have because of their accelerated metabolism, growth, and division rate. Thus, chaperones help the tumor cell rather than protect the patient, exemplifying chaperonopathies by mistake or collaborationism. This highlights the need for research on chaperonotherapy, namely the development of means to eliminate/inhibit pathogenic chaperones.


Asunto(s)
Chaperonas Moleculares/metabolismo , Neoplasias de la Tiroides/metabolismo , Animales , Chaperonina 60/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos
9.
Food Funct ; 12(7): 3083-3095, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33720221

RESUMEN

In the last few years, there has been emerging interest in developing treatments against human diseases using natural bioactive content. Here, the powder of the edible mushroom Pleurotus eryngii var. eryngii was mixed with the normal diet of mice bearing C26 colon carcinoma. Interestingly, it was evidenced by a significant increase in the survival rate of C26 tumor-bearing mice accompanied by a significant increase in Hsp90 and Hsp27 protein levels in the tumors. These data were paralleled by a decrease in Hsp60 levels. The mushroom introduced in the diet induced the inhibition of the transcription of the pro-inflammatory cytokines IL-6 and IL-1 exerting an anti-inflammatory action. The effects of the mushroom were mediated by the activation of c-Jun NH2-terminal kinases as a result of metabolic stress induced by the micronutrients introduced in the diet. In the tumors of C26 bearing mice fed with Pleurotus eryngii there was also a decreased expression of the mitotic regulator survivin and the anti-apoptotic factor Bcl-xL as well as an increase in the expression levels of Atg7, a protein that drives autophagy. In our hypothesis the interplay of these molecules favored the survival of the mice fed with the mushroom. These data are promising for the introduction of Pleurotus eryngii as a dietary supplement or as an adjuvant in anti-cancer therapy.


Asunto(s)
Neoplasias del Colon/dietoterapia , Pleurotus , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Respuesta al Choque Térmico/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Fitoterapia
10.
J Clin Med ; 9(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143379

RESUMEN

The COVID-19 pandemic made imperative the search for means to end it, which requires a knowledge of the mechanisms underpinning the multiplication and spread of its cause, the coronavirus SARS-CoV-2. Many viruses use members of the hosts' chaperoning system to infect the target cells, replicate, and spread, and here we present illustrative examples. Unfortunately, the role of chaperones in the SARS-CoV-2 cycle is still poorly understood. In this review, we examine the interactions of various coronaviruses during their infectious cycle with chaperones in search of information useful for future research on SARS-CoV-2. We also call attention to the possible role of molecular mimicry in the development of autoimmunity and its widespread pathogenic impact in COVID-19 patients. Viral proteins share highly antigenic epitopes with human chaperones, eliciting anti-viral antibodies that crossreact with the chaperones. Both, the critical functions of chaperones in the infectious cycle of viruses and the possible role of these molecules in COVID-19 autoimmune phenomena, make clear that molecular chaperones are promising candidates for the development of antiviral strategies. These could consist of inhibiting-blocking those chaperones that are necessary for the infectious viral cycle, or those that act as autoantigens in the autoimmune reactions causing generalized destructive effects on human tissues.

11.
Front Genet ; 11: 969, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33014020

RESUMEN

Two chaperonopathies have been linked to mutations in the human hsp60 (hHsp60; HSPD1) gene, but other existing variants might cause diseases, even if there is no comprehensive information about this possibility. To fill this vacuum, which might be at the basis of misdiagnoses or simply ignorance of chaperonopathies in patients who would benefit by proper identification of their ailments, we searched the sequenced human genomes available in public databases to determine the range of missense mutations in the single hsp60 gene. A total of 224 missense mutations were identified, including those already characterized. Detailed examination of these mutations was carried out to assess their possible impact on protein structure-function, considering: (a) the properties of individual amino acids; (b) the known functions of the amino acids in the human Hsp60 and/or in the highly similar bacterial ortholog GroEL; (c) the location of the mutant amino acids in the monomers and oligomers; and (d) structure-function relationships inferred from crystal structures. And we also applied a bioinformatics tool for predicting the impact of mutations on proteins. A portion of these genetic variants could have a deleterious impact on protein structure-function, but have not yet been associated with any pathology. Are these variants causing disease with mild clinical manifestations and are, therefore, being overlooked? Or are they causing overt disease, which is misdiagnosed? Our data indicate that more chaperonopathies might occur than is currently acknowledged and that awareness of chaperonopathies among medical personnel will increase their detection and improve patient management.

12.
Front Mol Biosci ; 7: 95, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582761

RESUMEN

Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space, and body fluids. These non-canonical functions include participation in inflammation, autoimmunity, carcinogenesis, cell replication, and other cellular events in health and disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and tissue locations and functions, which is noteworthy because there is only one hsp60 gene. The question is by what mechanism this protein can become multifaceted. Likely, one factor contributing to this diversity is post-translational modification (PTM). The amino acid sequence of Hsp60 contains many potential phosphorylation sites, and other PTMs are possible such as O-GlcNAcylation, nitration, acetylation, S-nitrosylation, citrullination, oxidation, and ubiquitination. The effect of some of these PTMs on Hsp60 functions have been examined, for instance phosphorylation has been implicated in sperm capacitation, docking of H2B and microtubule-associated proteins, mitochondrial dysfunction, tumor invasiveness, and delay or facilitation of apoptosis. Nitration was found to affect the stability of the mitochondrial permeability transition pore, to inhibit folding ability, and to perturb insulin secretion. Hyperacetylation was associated with mitochondrial failure; S-nitrosylation has an impact on mitochondrial stability and endothelial integrity; citrullination can be pro-apoptotic; oxidation has a role in the response to cellular injury and in cell migration; and ubiquitination regulates interaction with the ubiquitin-proteasome system. Future research ought to determine which PTM causes which variations in the Hsp60 molecular properties and functions, and which of them are pathogenic, causing chaperonopathies. This is an important topic considering the number of acquired Hsp60 chaperonopathies already cataloged, many of which are serious diseases without efficacious treatment.

13.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963896

RESUMEN

The fundamental challenge in fighting cancer is the development of protective agents able to interfere with the classical pathways of malignant transformation, such as extracellular matrix remodeling, epithelial-mesenchymal transition and, alteration of protein homeostasis. In the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties with promising potential for the development of therapeutic drugs for the treatment of cancer as well as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor for the maintenance of protein homeostasis and cell survival. High HSP60 levels were correlated, in particular, with cancer development and progression, and for this reason, we investigated the ability of curcumin to affect HSP60 expression, localization, and post-translational modifications using a neuroblastoma cell line. We have also looked at the ability of curcumin to interfere with the HSP60/HSP10 folding machinery. The cells were treated with 6, 12.5, and 25 µM of curcumin for 24 h, and the flow cytometry analysis showed that the compound induced apoptosis in a dose-dependent manner with a higher percentage of apoptotic cells at 25 µM. This dose of curcumin-induced a decrease in HSP60 protein levels and an upregulation of HSP60 mRNA expression. Moreover, 25 µM of curcumin reduced HSP60 ubiquitination and nitration, and the chaperonin levels were higher in the culture media compared with the untreated cells. Furthermore, curcumin at the same dose was able to favor HSP60 folding activity. The reduction of HSP60 levels, together with the increase in its folding activity and the secretion in the media led to the supposition that curcumin might interfere with cancer progression with a protective mechanism involving the chaperonin.


Asunto(s)
Chaperonina 60/química , Chaperonina 60/metabolismo , Curcumina/farmacología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Neuroblastoma/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neuroblastoma/tratamiento farmacológico , Pliegue de Proteína/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...