Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Cancer Res ; 14(1): 274-299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38323292

RESUMEN

The microbiota residing in the gut environment is essential for host homeostasis. Increasing evidence suggests that microbial perturbation (dysbiosis) regulates cancer initiation and progression at local and distant sites. Here, we have identified microbial dysbiosis with the depletion of commensal bacteria as a host-intrinsic factor associated with metastatic dissemination to the bone. Using a mouse model of triple-negative mammary cancer, we demonstrate that a pre-established disruption of microbial homeostasis using an antibiotic cocktail increases tumor growth, enhanced circulating tumor cells, and subsequent dissemination to the bone. We found that the presence of pathogenic bacteria and loss of commensal bacteria in an antibiotic-induced gut environment is associated with sustained inflammation. Increased secretion of G-CSF and MMP-9 in intestinal tissues, followed by increased neutrophil infiltration and severe systemic inflammation in tumor-bearing mice, indicates the direct consequence of a dysbiotic microbiome. Increased neutrophil infiltration to the bone metastatic niche facilitates extravasation and transendothelial migration of tumor cells. It provides a novel, pre-established, and favorable environment to form an immunosuppressive pre-metastatic niche. The presence of tumor cells in immunosuppressive metastatic tumor niche disrupts the balance between osteoblasts and osteoclasts, promotes osteoclast differentiation, and remodels the bone structure. Excessive bone resorption by osteoclasts causes bone degradation and ultimately causes extreme pain in a bone metastatic mouse model. In clinical settings, bone metastasis is associated with intractable severe pain that severely compromises the quality of life in these patients.

2.
Front Immunol ; 14: 1212190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559725

RESUMEN

Infection-induced T cell responses must be properly tempered and terminated to prevent immuno-pathology. Using transgenic mice, we demonstrate that T cell intrinsic STAT1 signaling is required to curb inflammation during acute infection with Toxoplasma gondii. Specifically, we report that mice lacking STAT1 selectively in T cells expel parasites but ultimately succumb to lethal immuno-pathology characterized by aberrant Th1-type responses with reduced IL-10 and increased IL-13 production. We also find that, unlike STAT1, STAT3 is not required for induction of IL-10 or suppression of IL-13 during acute toxoplasmosis. Each of these findings was confirmed in vitro and ChIP-seq data mining showed that STAT1 and STAT3 co-localize at the Il10 locus, as well as loci encoding other transcription factors that regulate IL-10 production, most notably Maf and Irf4. These data advance basic understanding of how infection-induced T cell responses are managed to prevent immuno-pathology and provide specific insights on the anti-inflammatory properties of STAT1, highlighting its role in shaping the character of Th1-type responses.

3.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163021

RESUMEN

Sepsis has recently been defined as life-threatening organ dysfunction caused by the dysregulated host response to an ongoing or suspected infection. To date, sepsis continues to be a leading cause of morbidity and mortality amongst hospitalized patients. Many risk factors contribute to development of sepsis, including pain-relieving drugs like opioids, which are frequently prescribed post-operatively. In light of the opioid crisis, understanding the interactions between opioid use and the development of sepsis has become extremely relevant, as opioid use is associated with increased risk of infection. Given that the intestinal tract is a major site of origin of sepsis-causing microbes, there has been an increasing focus on how alterations in the gut microbiome may predispose towards sepsis and mediate immune dysregulation. MicroRNAs, in particular, have emerged as key modulators of the inflammatory response during sepsis by tempering the immune response, thereby mediating the interaction between host and microbiome. In this review, we elucidate contributing roles of microRNA 146 in modulating sepsis pathogenesis and end with a discussion of therapeutic targeting of the gut microbiome in controlling immune dysregulation in sepsis.


Asunto(s)
Analgésicos Opioides/efectos adversos , Microbioma Gastrointestinal , Inmunidad , MicroARNs/genética , Probióticos/administración & dosificación , Sepsis/tratamiento farmacológico , Humanos , Sepsis/genética , Sepsis/inmunología , Sepsis/microbiología
4.
J Neuroimmune Pharmacol ; 17(1-2): 367-375, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34562195

RESUMEN

Prenatal opioid exposure is associated with significantly adverse medical, developmental, and behavioral outcomes in offspring, though the underlying mechanisms driving these impairments are still unclear. Accumulating evidence implicates gut microbial dysbiosis as a potential modulator of these adverse effects. However, how opioid exposure during pregnancy alters the maternal and neonatal microbiome remain to be elucidated. Here, we utilize a murine model of brief hydromorphone exposure during pregnancy (gestation day 11-13; i.p.; 10 mg/kg) to examine its impact on the maternal and neonatal microbiome. Fecal samples were collected at various timepoints in dams (4 days post hydromorphone exposure, birth, and weaning) and offspring (2, 3, and 5 weeks) to interrogate longitudinal changes in the microbiome. Stomach contents at 2 weeks were also collected as a surrogate for breastmilk and microbial analysis was performed using 16S rRNA sequencing. Alongside alterations in the maternal gut microbial composition, offspring gut microbiota exhibited distinct communities at 2 and 3 weeks. Furthermore, functional profiling of microbial communities revealed significant differences in microbial community-level phenotypes gram-negative, gram-positive, and potentially pathogenic in maternal and/or neonatal hydromorphone exposed groups compared with controls. We also observed differences in stomach microbiota in opioid-exposed vs non-exposed offspring, which suggests breast milk may also play a role in shaping the development of the neonatal gut microbiota. Together, we provide evidence of maternal and neonatal microbial dysbiosis provoked even with brief hydromorphone exposure during pregnancy.


Asunto(s)
Analgésicos Opioides , Hidromorfona , Animales , Ratones , Embarazo , Femenino , Analgésicos Opioides/toxicidad , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...