Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
2.
J Sport Health Sci ; 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38462172

BACKGROUND: Near-infrared spectroscopy (NIRS) technology has allowed for the measurement of cerebral and skeletal muscle oxygenation simultaneously during exercise. Since this technology has been growing and is now successfully used in laboratory and sports settings, this systematic review aimed to synthesize the evidence and enhance an integrative understanding of blood flow adjustments and oxygen (O2) changes (i.e., the balance between O2 delivery and O2 consumption) within the cerebral and muscle systems during exercise. METHODS: A systematic review was conducted using PubMed, Embase, Scopus, and Web of Science databases to search for relevant studies that simultaneously investigated cerebral and muscle hemodynamic changes using the near-infrared spectroscopy system during exercise. This review considered manuscripts written in English and available before February 9, 2023. Each step of screening involved evaluation by 2 independent authors, with disagreements resolved by a third author. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the methodological quality of the studies. RESULTS: Twenty studies were included, of which 80% had good methodological quality, and involved 290 young or middle-aged adults. Different types of exercises were used to assess cerebral and muscle hemodynamic changes, such as cycling (n = 11), treadmill (n = 1), knee extension (n = 5), isometric contraction of biceps brachii (n = 3), and duet swim routines (n = 1). The cerebral hemodynamics analysis was focused on the frontal cortex (n = 20), while in the muscle, the analysis involved vastus lateralis (n = 18), gastrocnemius (n = 3), biceps brachii (n = 5), deltoid (n = 1), and intercostal muscle (n = 1). Overall, muscle deoxygenation increases during exercise, reaching a plateau in voluntary exhaustion, while in the brain, oxyhemoglobin concentration increases with exercise intensity, reaching a plateau or declining at the exhaustion point. CONCLUSION: Muscle and cerebral oxygenation respond differently to exercise, with muscle increasing O2 utilization and cerebral tissue increasing O2 delivery during exercise. However, at the exhaustion point, both muscle and cerebral oxygenation become compromised. This is characterized by a reduction in blood flow and a decrease in O2 extraction in the muscle, while in the brain, oxygenation reaches a plateau or decline, potentially resulting in motor failure during exercise.

3.
Neurorehabil Neural Repair ; 38(5): 364-372, 2024 May.
Article En | MEDLINE | ID: mdl-38506532

BACKGROUND: Concussions result in transient symptoms stemming from a cortical metabolic energy crisis. Though this metabolic energy crisis typically resolves in a month, symptoms can persist for years. The symptomatic period is associated with gait dysfunction, the cortical underpinnings of which are poorly understood. Quantifying prefrontal cortex (PFC) activity during gait may provide insight into post-concussion gait dysfunction. The purpose of this study was to explore the effects of persisting concussion symptoms on PFC activity during gait. We hypothesized that adults with persisting concussion symptoms would have greater PFC activity during gait than controls. Within the concussed group, we hypothesized that worse symptoms would relate to increased PFC activity during gait, and that increased PFC activity would relate to worse gait characteristics. METHODS: The Neurobehavior Symptom Inventory (NSI) characterized concussion symptoms. Functional near-infrared spectroscopy quantified PFC activity (relative concentration changes of oxygenated hemoglobin [HbO2]) in 14 people with a concussion and 25 controls. Gait was assessed using six inertial sensors in the concussion group. RESULTS: Average NSI total score was 26.4 (13.2). HbO2 was significantly higher (P = .007) for the concussed group (0.058 [0.108]) compared to the control group (-0.016 [0.057]). Within the concussion group, HbO2 correlated with NSI total symptom score (ρ = .62; P = .02), sagittal range of motion (r = .79; P = .001), and stride time variability (r = -.54; P = .046). CONCLUSION: These data suggest PFC activity relates to symptom severity and some gait characteristics in people with persistent concussion symptoms. Identifying the neurophysiological underpinnings to gait deficits post-concussion expands our knowledge of motor behavior deficits in people with persistent concussion symptoms.


Brain Concussion , Post-Concussion Syndrome , Prefrontal Cortex , Spectroscopy, Near-Infrared , Humans , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Male , Female , Adult , Brain Concussion/physiopathology , Brain Concussion/complications , Young Adult , Post-Concussion Syndrome/physiopathology , Post-Concussion Syndrome/etiology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Middle Aged , Gait/physiology
4.
J Neuroeng Rehabil ; 20(1): 144, 2023 10 24.
Article En | MEDLINE | ID: mdl-37875971

BACKGROUND: Gait and balance impairments are among the main causes of falls in older adults. The feasibility and effectiveness of adding sensor-based feedback to physical therapy (PT) in an outpatient PT setting is unknown. We evaluated the feasibility and effectiveness of PT intervention combined with a therapist-assisted visual feedback system, called Mobility Rehab, (PT + MR) in older adults. METHODS: Twenty-eight older adults with and without neurological diseases were assigned either PT + MR (n = 22) or PT alone (n = 6). Both groups performed 8 sessions (individualized) of 45 min long (30 min for gait training and 15 min for endurance, strength, and balance exercises) in an outpatient clinic. Mobility Rehab uses unobtrusive, inertial sensors on both wrists and feet, and at the sternum level with real-time algorithms to provide real-time feedback on five gait metrics (step duration, stride length, elevation at mid-swing, arm swing range-of-motion [ROM], and trunk coronal ROM), which are displayed on a tablet. The primary outcome was the Activities-specific Balance Confidence scale (ABC). The secondary outcome was gait speed measured with wearable inertial sensors during 2 min of walking. RESULTS: There were no between-group differences at baseline for any variable (P > 0.05). Neither PT + MR nor PT alone showed significant changes on the ABC scores. PT + MR, but not PT alone, showed significant improvements in gait speed and arm swing ROM. The system was evaluated as 'easy to use' by the PT. CONCLUSIONS: Our preliminary results show that PT + MR improves gait speed in older adults with and without neurological diseases in an outpatient clinic. CLINICAL TRIAL REGISTRATION: www. CLINICALTRIALS: gov , identifier: NCT03869879.


Feedback, Sensory , Gait , Aged , Humans , Exercise Therapy/methods , Feedback , Walking , Feasibility Studies
5.
Neurorehabil Neural Repair ; 37(10): 734-743, 2023 Oct.
Article En | MEDLINE | ID: mdl-37772512

BACKGROUND: Visual cues can improve gait in Parkinson's disease (PD), including those experiencing freezing of gait (FOG). However, responses are variable and underpinning mechanisms remain unclear. Visuo-cognitive processing (measured through visual exploration) has been implicated in cue response, but this has not been comprehensively examined. OBJECTIVE: To examine visual exploration and gait with and without visual cues in PD who do and do not self-report FOG, and healthy controls (HC). METHODS: 17 HC, 21 PD without FOG, and 22 PD with FOG walked with and without visual cues, under single and dual-task conditions. Visual exploration (ie, saccade frequency, duration, peak velocity, amplitude, and fixation duration) was measured via mobile eye-tracking and gait (ie, gait speed, stride length, foot strike angle, stride time, and stride time variability) with inertial sensors. RESULTS: PD had impaired gait compared to HC, and dual-tasking made gait variables worse across groups (all P < .01). Visual cues improved stride length, foot strike angle, and stride time in all groups (P < .01). Visual cueing also increased saccade frequency, but reduced saccade peak velocity and amplitude in all groups (P < .01). Gait improvement related to changes in visual exploration with visual cues in PD but not HC, with relationships dependent on group (FOG vs non-FOG) and task (single vs dual). CONCLUSION: Visual cues improved visual exploration and gait outcomes in HC and PD, with similar responses in freezers and non-freezers. Freezer and non-freezer specific associations between cue-related changes in visual exploration and gait indicate different underlying visuo-cognitive processing within these subgroups for cue response.


Gait Disorders, Neurologic , Parkinson Disease , Humans , Cues , Parkinson Disease/complications , Gait Disorders, Neurologic/etiology , Walking/physiology , Gait/physiology
6.
Exp Brain Res ; 241(9): 2191-2203, 2023 Sep.
Article En | MEDLINE | ID: mdl-37632535

Ocular microtremor (OMT) is the smallest of three involuntary fixational micro eye movements, which has led to it being under researched in comparison. The link between OMT and brain function generates a strong rationale for further study as there is potential for its use as a biomarker in populations with neurological injury and disease. This structured review focused on populations previously studied, instrumentation used for measurement, commonly reported OMT outcomes, and recommendations concerning protocol design and future studies. Current methods of quantifying OMT will be reviewed to analyze their efficacy and efficiency and guide potential development and understanding of novel techniques. Electronic databases were systematically searched and compared with predetermined inclusion criteria. 216 articles were identified in the search and screened by two reviewers. 16 articles were included for review. Findings showed that piezoelectric probe is the most common method of measuring OMT, with fewer studies involving non-invasive approaches, such as contact lenses and laser imaging. OMT frequency was seen to be reduced during general anesthesia at loss of consciousness and in neurologically impaired participants when compared to healthy adults. We identified the need for a non-invasive technique for measuring OMT and highlight its potential in clinical applications as an objective biomarker for neurological assessments. We highlight the need for further research on the clinical validation of OMT to establish its potential to identify or predict a meaningful clinical or functional state, specifically, regarding accuracy, precision, and reliability of OMT.


Eye , Face , Adult , Humans , Consciousness , Reproducibility of Results
7.
PLOS Digit Health ; 2(8): e0000335, 2023 Aug.
Article En | MEDLINE | ID: mdl-37611053

Visual problems are common in people who have neurological injury or disease, with deficits linked to postural control and gait impairment. Vision therapy could be a useful intervention for visual impairment in various neurological conditions such as stroke, head injury, or Parkinson's disease. Stroboscopic visual training (SVT) has been shown to improve aspects of visuomotor and cognitive performance in healthy populations, but approaches vary with respect to testing protocols, populations, and outcomes. The purpose of this structured review was to examine the use of strobe glasses as a training intervention to inform the development of robust protocols for use in clinical practice. Within this review, any studies using strobe glasses as a training intervention with visual or motor performance-related outcomes was considered. PubMed, Scopus, and ProQuest databases were searched in January 2023. Two independent reviewers (JD and RM) screened articles that used strobe glasses as a training tool. A total of 33 full text articles were screened, and 15 met inclusion/exclusion criteria. Reported outcomes of SVT included improvements in short-term memory, attention, and visual response times, with emerging evidence for training effects translating to balance and physical performance. However, the lack of standardisation across studies for SVT protocols, variation in intervention settings, duration and outcomes, and the limited evidence within clinical populations demonstrates that further work is required to determine optimal strobe dosage and delivery. This review highlights the potential benefits, and existing research gaps regarding the use of SVT in clinical practice, with recommendations for clinicians considering adopting this technology as part of future studies in this emerging field.

8.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article En | MEDLINE | ID: mdl-37571703

Gait speed declines with age and slower walking speeds are associated with poor health outcomes. Understanding why we do not walk faster as we age, despite being able to, has implications for rehabilitation. Changes in regional oxygenated haemoglobin (HbO2) across the frontal lobe were monitored using functional near infrared spectroscopy in 17 young and 18 older adults while they walked on a treadmill for 5 min, alternating between 30 s of walking at a preferred and fast (120% preferred) speed. Gait was quantified using a triaxial accelerometer (lower back). Differences between task (preferred/fast) and group (young/old) and associations between regional HbO2 and gait were evaluated. Paired tests indicated increased HbO2 in the supplementary motor area (right) and primary motor cortex (left and right) in older adults when walking fast (p < 0.006). HbO2 did not significantly change in the young when walking fast, despite both groups modulating gait. When evaluating the effect of age (linear mixed effects model), greater increases in HbO2 were observed for older adults when walking fast (prefrontal cortex, premotor cortex, supplementary motor area and primary motor cortex) compared to young adults. In older adults, increased step length and reduced step length variability were associated with larger increases in HbO2 across multiple regions when walking fast. Walking fast required increased activation of motor regions in older adults, which may serve as a therapeutic target for rehabilitation. Widespread increases in HbO2 across the frontal cortex highlight that walking fast represents a resource-intensive task as we age.


Motor Cortex , Walking Speed , Aged , Humans , Young Adult , Gait/physiology , Oxyhemoglobins , Spectroscopy, Near-Infrared/methods , Walking/physiology , Walking Speed/physiology
9.
Sensors (Basel) ; 23(10)2023 May 11.
Article En | MEDLINE | ID: mdl-37430565

Although the multifactorial nature of falls in Parkinson's disease (PD) is well described, optimal assessment for the identification of fallers remains unclear. Thus, we aimed to identify clinical and objective gait measures that best discriminate fallers from non-fallers in PD, with suggestions of optimal cutoff scores. METHODS: Individuals with mild-to-moderate PD were classified as fallers (n = 31) or non-fallers (n = 96) based on the previous 12 months' falls. Clinical measures (demographic, motor, cognitive and patient-reported outcomes) were assessed with standard scales/tests, and gait parameters were derived from wearable inertial sensors (Mobility Lab v2); participants walked overground, at a self-selected speed, for 2 min under single and dual-task walking conditions (maximum forward digit span). Receiver operating characteristic curve analysis identified measures (separately and in combination) that best discriminate fallers from non-fallers; we calculated the area under the curve (AUC) and identified optimal cutoff scores (i.e., point closest-to-(0,1) corner). RESULTS: Single gait and clinical measures that best classified fallers were foot strike angle (AUC = 0.728; cutoff = 14.07°) and the Falls Efficacy Scale International (FES-I; AUC = 0.716, cutoff = 25.5), respectively. Combinations of clinical + gait measures had higher AUCs than combinations of clinical-only or gait-only measures. The best performing combination included the FES-I score, New Freezing of Gait Questionnaire score, foot strike angle and trunk transverse range of motion (AUC = 0.85). CONCLUSION: Multiple clinical and gait aspects must be considered for the classification of fallers and non-fallers in PD.


Gait Disorders, Neurologic , Parkinson Disease , Humans , Gait Disorders, Neurologic/diagnosis , Parkinson Disease/diagnosis , Gait , Walking , Lower Extremity
10.
Sensors (Basel) ; 23(10)2023 May 18.
Article En | MEDLINE | ID: mdl-37430780

The neural correlates of locomotion impairments observed in people with Parkinson's disease (PD) are not fully understood. We investigated whether people with PD present distinct brain electrocortical activity during usual walking and the approach phase of obstacle avoidance when compared to healthy individuals. Fifteen people with PD and fourteen older adults walked overground in two conditions: usual walking and obstacle crossing. Scalp electroencephalography (EEG) was recorded using a mobile 64-channel EEG system. Independent components were clustered using a k-means clustering algorithm. Outcome measures included absolute power in several frequency bands and alpha/beta ratio. During the usual walk, people with PD presented a greater alpha/beta ratio in the left sensorimotor cortex than healthy individuals. While approaching obstacles, both groups reduced alpha and beta power in the premotor and right sensorimotor cortices (balance demand) and increased gamma power in the primary visual cortex (visual demand). Only people with PD reduced alpha power and alpha/beta ratio in the left sensorimotor cortex when approaching obstacles. These findings suggest that PD affects the cortical control of usual walking, leading to a greater proportion of low-frequency (alpha) neuronal firing in the sensorimotor cortex. Moreover, the planning for obstacle avoidance changes the electrocortical dynamics associated with increased balance and visual demands. People with PD rely on increased sensorimotor integration to modulate locomotion.


Parkinson Disease , Sensorimotor Cortex , Humans , Aged , Walking , Locomotion , Algorithms
11.
Behav Brain Res ; 452: 114581, 2023 08 24.
Article En | MEDLINE | ID: mdl-37453515

BACKGROUND: Balance impairments in people with Parkinson's disease (PD) demonstrated mainly in challenging postural tasks, such as increased body oscillation may be attributed to the deficits in the brain structures functionality involved in postural control (e.g., motor cortex, midbrain, and brainstem). Although promising results, the effect of transcranial direct current stimulation (tDCS) on postural control in people with PD is unclear, especially in objective measures such as the center of pressure (CoP) parameters. Thus, we analyzed the effects of a single session of tDCS on the CoP parameters during the adapted tandem position in people with PD. METHODS: Nineteen people with PD participated in this crossover, randomized, and double-blind study. Anodal tDCS was applied over the primary motor cortex in two conditions of stimulation (2 mA/active and sham) on two different days for 20 min immediately before the postural control evaluation. Participants remained standing in an adapted tandem position for the postural control assessment for 30 s (three trials). CoP parameters were acquired by a force plate. RESULTS: No significant differences were demonstrated between stimulation conditions (p-value range = 0.15-0.89). CONCLUSIONS: Our results suggested that a single session of tDCS with 2 mA does not improve the postural control of people with PD during adapted tandem.


Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Pilot Projects , Parkinson Disease/therapy , Postural Balance/physiology , Double-Blind Method
12.
PLoS One ; 18(6): e0285100, 2023.
Article En | MEDLINE | ID: mdl-37319251

BACKGROUND: Mobile applications and technology (e.g., stroboscopic glasses) are increasingly being used to deliver combined visual and cognitive (termed visuo-cognitive) training that replaces standard pen and paper-based interventions. These 'technological visuo-cognitive training' (TVT) interventions could help address the complex problems associated with visuo-cognitive dysfunction in people with long term neurological conditions such as Parkinson's disease. As data emerges to support the effectiveness of these technologies, patient perspectives offer an insight into how novel TVT is received by people living with long term neurological conditions. OBJECTIVE: To explore experiences of people with Parkinson's in using technology as part of a home-based visuo-cognitive training programme compared to traditional approaches to rehabilitation. METHODS: Eight people with Parkinson's who took part in a pilot randomised cross-over trial, investigating the efficacy and feasibility of TVT compared to standard care, were interviewed to explore their experiences of each arm of the training they received. Integration of Normalisation Process Theory (NPT) into the analysis enabled examination of the potential to embed novel TVT into a home-based rehabilitation intervention for people with Parkinson's disease. RESULTS: Three key themes emerged from the thematic analysis as factors influencing the implementation potential of TVT for people with Parkinson's disease: perceived value of technology, perceived ease of use and support mechanisms. Further examination of the data through the lens of NPT revealed that the implantation and embedding of novel technology was dependent on positive user experience, individual disease manifestation and engagement with a professional. CONCLUSIONS: Our findings provide insights into the challenges of engaging with technology-based interventions while living with a progressive and fluctuating disease. When implementing technology-based interventions for people with Parkinson's, we recommend that patients and clinicians collaborate to determine whether the technology fits the capacity, preference, and treatment needs of the individual patient.


Cognitive Dysfunction , Occupational Therapy , Parkinson Disease , Humans , Parkinson Disease/psychology , Cognitive Training , Cognitive Dysfunction/rehabilitation
14.
Estud. interdiscip. envelhec ; v. 27(n. 1 (2022)): 133-156, jan.2023. ilus
Article Pt | LILACS, INDEXPSI | ID: biblio-1426837

Introdução: os comprometimentos do andar em idosos com doença de Parkinson (DP) estão associados à elevada ocorrência de quedas e à redução dos níveis de independência. O objetivo do estudo foi comparar a resposta dos parâmetros do andar em idosos com doença de Parkinson (DP), durante, imediatamente após e até uma hora após o término de uma sessão de treinamento do andar com e sem dicas auditivas rítmicas, utilizando três ritmos diferentes para o grupo dica (10% abaixo da cadência preferida, cadência preferida e 10% acima) e um ritmo diferente para o grupo controle (velocidade usual de cada participante). Métodos: vinte e nove idosos foram aleatoriamente distribuídos em dois grupos: "controle" e "dica". As sessões de intervenção tiveram 30 minutos de duração e a diferença entre os grupos foi a utilização de dicas auditivas rítmicas oferecidas por um metrônomo no grupo dica. O andar foi avaliado antes, durante e até uma hora após a sessão de intervenção. Resultados: os grupos apresentaram desempenhos similares ao longo das avaliações, com aumento do comprimento do passo e redução da variabilidade da duração do passo. Conclusão: a sessão de intervenção com dicas auditivas rítmicas apresentou efeitos similares aos da sessão de treino sem dica para o andar de idosos com DP.(AU)


Introduction: Gait impairments in older people with Parkinson's disease (PD) are associated with a high occurrence of falls and reduced levels of patients' independence. The objective of the study was to compare the response of gait parameters in older people with Parkinson's disease (PD), during, immediately after, and up to 1h after the end of a single locomotion training session with and without rhythmic auditory cues, using 3 different rhythms for the tip group (10% below the preferred cadence, preferred cadence and 10% above) and 1 different rhythm for the control group (usual speed of each participant). Materials and method: 29 older people were randomly assigned to two groups: Control and "Cue". The intervention sessions lasted 30 minutes and the difference between the groups was the use of rhythmic auditory cues offered by a metro-nome in the Cue group. Gait was assessed before, during, and up to 1 hour after the intervention session. Results: The groups showed similar performances throughout the assessments, with increased step length and reduced step time variability in response to the intervention (compared to the baseline assessment). Conclusion: The intervention session with rhythmic auditory cues had similar effects on gait as the session without cues in older people with PD.(AU)


Male , Female , Aged , Aged, 80 and over , Parkinson Disease , Aging , Neurodegenerative Diseases , Locomotion
15.
Parkinsonism Relat Disord ; 106: 105235, 2023 01.
Article En | MEDLINE | ID: mdl-36512851

BACKGROUND: Although much is known about the multifactorial nature of falls in Parkinson's disease (PD), optimal classification of fallers remains unclear. OBJECTIVE: To identify clinical (demographic, motor, cognitive and patient-reported) and objective mobility (balance and gait) measures that best discriminate fallers from non-fallers in PD. METHODS: People with mild-to-moderate idiopathic PD were classified as fallers (at least one fall; n = 54) or non-fallers (n = 90) based on previous six months falls. Clinical characteristics included demographic, motor and cognitive status and patient-reported outcomes. Mobility (balance and gait) characteristics were derived from body-worn, inertial sensors while performing walking and standing tasks. To investigate the combinations of (up to four) measures that best discriminate fallers from non-fallers in each scenario (i.e., clinical-only, mobility-only and combined clinical + mobility models), we applied logistic regression employing a 'best subsets selection strategy' with a 5-fold cross validation, and calculated the area under the curve (AUC). RESULTS: The highest AUCs for the clinical-only, mobility-only and clinical + mobility models were 0.89, 0.88, and 0.94, respectively. The most consistently selected measures in the top-10 ranked models were freezing of gait status (8x), the root mean square of anterior-posterior trunk acceleration while standing on a foam with eyes open (5x), gait double support duration (4x) and the postural instability and gait disorders score from the MDS UPDRS (4x). CONCLUSIONS: Findings highlight the importance of considering multiple aspects of clinical as well as objective balance and gait characteristics for the classification of fallers and non-fallers in PD.


Gait Disorders, Neurologic , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/psychology , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Gait , Walking , Postural Balance
16.
PLoS One ; 17(11): e0275894, 2022.
Article En | MEDLINE | ID: mdl-36395190

Various cueing strategies (internal and external) have been used to alleviate gait deficits in Parkinson's disease (PD). However, it remains unclear which type of cueing strategy is most effective at different disease stages or with more severe walking impairment, such as freezing of gait (FOG). The underlying neural mechanisms of response to cueing are also unknown. This trial aims to: (i) determine brain activity response to cue stimulus (internal, visual, auditory or tactile) when walking in PD and; (ii) examine changes in brain activity to cues at different stages of PD. This ongoing single-site study uses an exploratory observational design, with laboratory application of cues for gait deficit. A total of 80 people with PD who meet the inclusion criteria will be enrolled. Participants are split into groups dependent on their disease stage (classified with the Hoehn and Yahr (H&Y) scale); n = 20 H&YI; n = 30 H&YII; n = 30 H&YIII. Within the H&Y stage II and III groups, we will also ensure recruitment of a sub-group of 15 individuals with FOG within each group. Participants perform walking tasks under several conditions: baseline walking without cues; randomized cued walking conditions [internal and external (visual, auditory and tactile) cues]. A combined functional near-infrared spectroscopy and electroencephalography system quantifies cortical brain activity while walking. Inertial sensors are used to assess gait. Primary outcome measures are cue-related changes in cortical brain activity while walking, including the relative change in cortical HbO2 and the power spectral densities at alpha (8-13Hz), beta (13-30Hz), delta (0.5-4Hz), theta (4-8Hz) and gamma (30-40Hz) frequency bandwidths. Secondary outcome measures are cue-related changes in spatiotemporal gait characteristics. Findings will enhance our understanding about the cortical responses to different cueing strategies and how they are influenced by PD progression and FOG status. This trial is registered at clinicaltrials.gov (NCT04863560; April 28, 2021, https://clinicaltrials.gov/ct2/show/NCT04863560).


Gait Disorders, Neurologic , Parkinson Disease , Humans , Cues , Gait/physiology , Brain , Observational Studies as Topic
17.
PLoS One ; 17(10): e0275738, 2022.
Article En | MEDLINE | ID: mdl-36206239

Visual and cognitive dysfunction are common in Parkinson's disease and relate to balance and gait impairment, as well as increased falls risk and reduced quality of life. Vision and cognition are interrelated (termed visuo-cognition) which makes intervention complex in people with Parkinson's (PwP). Non-pharmacological interventions for visuo-cognitive deficits are possible with modern technology, such as combined mobile applications and stroboscopic glasses, but evidence for their effectiveness in PwP is lacking. We aim to investigate whether technological visuo-cognitive training (TVT) can improve visuo-cognitive function in PwP. We will use a parallel group randomised controlled trial to evaluate the feasibility and acceptability of TVT versus standard care in PwP. Forty PwP who meet our inclusion criteria will be randomly assigned to one of two visuo-cognitive training interventions. Both interventions will be carried out by a qualified physiotherapist in participants own homes (1-hour sessions, twice a week, for 4 weeks). Outcome measures will be assessed on anti-parkinsonian medication at baseline and at the end of the 4-week intervention. Feasibility of the TVT intervention will be assessed in relation to safety and acceptability of the technological intervention, compliance and adherence to the intervention and usability of equipment in participants homes. Additionally, semi structured interviews will be conducted to explore participants' experience of the technology. Exploratory efficacy outcomes will include change in visual attention measured using the Trail Making Test as well as changes in balance, gait, quality of life, fear of falling and levels of activity. This pilot study will focus on the feasibility and acceptability of TVT in PwP and provide preliminary data to support the design of a larger, multi-centre randomised controlled trial. This trial is registered at isrctn.com (ISRCTN46164906).


Accidental Falls , Quality of Life , Accidental Falls/prevention & control , Cognition , Fear , Feasibility Studies , Humans , Multicenter Studies as Topic , Pilot Projects , Randomized Controlled Trials as Topic , Technology
18.
Ageing Res Rev ; 81: 101736, 2022 11.
Article En | MEDLINE | ID: mdl-36116750

Postural instability is common in neurological diseases. Although transcranial direct current stimulation (tDCS) seems to be a promising complementary therapy, emerging evidence indicates mixed results and protocols' characteristics. We conducted a systematic review and meta-analysis on PubMed, EMBASE, Scopus, and Web of Science to synthesize key findings of the effectiveness of single and multiple sessions of tDCS alone and combined with other interventions on balance in adults with neurological disorders. Thirty-seven studies were included in the systematic review and 33 in the meta-analysis. The reviewed studies did not personalize the stimulation protocol to individual needs/characteristics. A random-effects meta-analysis indicated that tDCS alone (SMD = -0.44; 95%CI = -0.69/-0.19; p < 0.001) and combined with another intervention (SMD = -0.31; 95%CI = -0.51/-0.11; p = 0.002) improved balance in adults with neurological disorders (small to moderate effect sizes). Balance improvements were evidenced regardless of the number of sessions and targeted area. In summary, tDCS is a promising therapy for balance rehabilitation in adults with neurological disorders. However, further clinical trials should identify factors that influence responsiveness to tDCS for a more tailored approach, which may optimize the clinical use of tDCS.


Nervous System Diseases , Stroke Rehabilitation , Stroke , Transcranial Direct Current Stimulation , Activities of Daily Living , Humans , Nervous System Diseases/therapy , Stroke Rehabilitation/methods , Transcranial Direct Current Stimulation/methods
19.
Sensors (Basel) ; 22(18)2022 Sep 07.
Article En | MEDLINE | ID: mdl-36146096

Turning is a common impairment of mobility in people with Parkinson's disease (PD), which increases freezing of gait (FoG) episodes and has implications for falls risk. Visual cues have been shown to improve general gait characteristics in PD. However, the effects of visual cues on turning deficits in PD remains unclear. We aimed to (i) compare the response of turning performance while walking (180° and 360° turns) to visual cues in people with PD with and without FoG; and (ii) examine the relationship between FoG severity and response to visual cues during turning. This exploratory interventional study measured turning while walking in 43 participants with PD (22 with self-reported FoG) and 20 controls using an inertial sensor placed at the fifth lumbar vertebrae region. Participants walked straight and performed 180° and 360° turns midway through a 10 m walk, which was done with and without visual cues (starred pattern). The turn duration and velocity response to visual cues were assessed using linear mixed effects models. People with FoG turned slower and longer than people with PD without FoG and controls (group effect: p < 0.001). Visual cues reduced the velocity of turning 180° across all groups and reduced the velocity of turning 360° in people with PD without FoG and controls. FoG severity was not significantly associated with response to visual cues during turning. Findings suggest that visual cueing can modify turning during walking in PD, with response influenced by FoG status and turn amplitude. Slower turning in response to visual cueing may indicate a more cautious and/or attention-driven turning pattern. This study contributes to our understanding of the influence that cues can have on turning performance in PD, particularly in freezers, and will aid in their therapeutic application.


Gait Disorders, Neurologic , Parkinson Disease , Cues , Gait/physiology , Humans , Parkinson Disease/complications , Walking/physiology
20.
Neurorehabil Neural Repair ; 36(9): 603-612, 2022 09.
Article En | MEDLINE | ID: mdl-36004814

BACKGROUND AND AIM: Individuals with Parkinson's disease (PD) with and without freezing of Gait (FoG) may respond differently to exercise interventions for several reasons, including disease duration. This study aimed to determine whether both people with and without FoG benefit from the Agility Boot Camp with Cognitive Challenges (ABC-C) program. METHODS: This secondary analysis of our ABC-C trial included 86 PD subjects: 44 without FoG (PD-FoG) and 42 with FoG (PD + FoG). We collected measures of standing sway balance, anticipatory postural adjustments, postural responses, and a 2-minute walk with and without a cognitive task. Two-way repeated analysis of variance, with disease duration as covariate, was used to investigate the effects of ABC-C program. Effect sizes were calculated using standardized response mean (SRM) for PD-FoG and PD + FoG, separately. RESULTS: The ABC-C program was effective in improving gait performance in both PD-FoG and PD + FoG, even after controlling for disease duration. Specifically, dual-task gait speed (P < .0001), dual-cost stride length (P = .012), and these single-task measures: arm range of motion (P < .0001), toe-off angle (P = .005), gait cycle duration variability (P = .019), trunk coronal range of motion (P = .042), and stance time (P = .046) improved in both PD-FoG and PD + FoG. There was no interaction effect between time (before and after exercise) and group (PD-FoG/PD + FoG) in all 24 objective measures of balance and gait. Dual-task gait speed improved the most in PD + FoG (SRM = 1.01), whereas single-task arm range of motion improved the most in PD-FoG (SRM = 1.01). CONCLUSION: The ABC-C program was similarly effective in improving gait (and not balance) performance in both PD-FoG and PD + FoG.


Gait Disorders, Neurologic , Parkinson Disease , Gait/physiology , Gait Disorders, Neurologic/complications , Humans , Parkinson Disease/complications , Postural Balance/physiology , Walking/physiology
...