Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1299025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098795

RESUMEN

Sugarcane (Saccharum spp.) is an important crop for sugar and bioethanol production worldwide. To maintain and increase sugarcane yields in marginal areas, the use of nitrogen (N) fertilizers is essential, but N overuse may result in the leaching of reactive N to the natural environment. Despite the importance of N in sugarcane production, little is known about the molecular mechanisms involved in N homeostasis in this crop, particularly regarding ammonium (NH4 +), the sugarcane's preferred source of N. Here, using a sugarcane bacterial artificial chromosome (BAC) library and a series of in silico analyses, we identified an AMMONIUM TRANSPORTER (AMT) from the AMT2 subfamily, sugarcane AMMONIUM TRANSPORTER 3;3 (ScAMT3;3), which is constitutively and highly expressed in young and mature leaves. To characterize its biochemical function, we ectopically expressed ScAMT3;3 in heterologous systems (Saccharomyces cerevisiae and Arabidopsis thaliana). The complementation of triple mep mutant yeast demonstrated that ScAMT3;3 is functional for NH3/H+ cotransport at high availability of NH4 + and under physiological pH conditions. The ectopic expression of ScAMT3;3 in the Arabidopsis quadruple AMT knockout mutant restored the transport capacity of 15N-NH4 + in roots and plant growth under specific N availability conditions, confirming the role of ScAMT3;3 in NH4 + transport in planta. Our results indicate that ScAMT3;3 belongs to the low-affinity transport system (Km 270.9 µM; Vmax 209.3 µmol g-1 root DW h-1). We were able to infer that ScAMT3;3 plays a presumed role in NH4 + source-sink remobilization in the shoots via phloem loading. These findings help to shed light on the functionality of a novel AMT2-type protein and provide bases for future research focusing on the improvement of sugarcane yield and N use efficiency.

2.
Front Plant Sci ; 13: 1039041, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466275

RESUMEN

AMMONIUM TRANSPORTER/METHYLAMMONIUM PERMEASE/RHESUS (AMT) family members transport ammonium across membranes in all life domains. Plant AMTs can be categorized into AMT1 and AMT2 subfamilies. Functional studies of AMTs, particularly AMT1-type, have been conducted using model plants but little is known about the function of AMTs from crops. Sugarcane (Saccharum spp.) is a major bioenergy crop that requires heavy nitrogen fertilization but depends on a low carbon-footprint for competitive sustainability. Here, we identified and functionally characterized sugarcane ScAMT2;1 by complementing ammonium uptake-defective mutants of Saccharomyces cerevisiae and Arabidopsis thaliana. Reporter gene driven by the ScAMT2;1 promoter in A. thaliana revealed preferential expression in the shoot vasculature and root endodermis/pericycle according to nitrogen availability and source. Arabidopsis quadruple mutant plants expressing ScAMT2;1 driven by the CaMV35S promoter or by a sugarcane endogenous promoter produced significantly more biomass than mutant plants when grown in NH4 + and showed more 15N-ammonium uptake by roots and nitrogen translocation to shoots. In A. thaliana, ScAMT2;1 displayed a Km of 90.17 µM and Vmax of 338.99 µmoles h-1 g-1 root DW. Altogether, our results suggest that ScAMT2;1 is a functional high-affinity ammonium transporter that might contribute to ammonium uptake and presumably to root-to-shoot translocation under high NH4 + conditions.

3.
Mol Genet Genomics ; 297(5): 1403-1421, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35879567

RESUMEN

KEY MESSAGE: Nitrate uptake in sugarcane roots is regulated at the transcriptional and posttranscriptional levels based on the physiological status of the plant and is likely a determinant mechanism for discrimination against nitrate. Sugarcane (Saccharum spp.) is one of the most suitable energy crops for biofuel feedstock, but the reduced recovery of nitrogen (N) fertilizer by sugarcane roots increases the crop carbon footprint. The low nitrogen use efficiency (NUE) of sugarcane has been associated with the significantly low nitrate uptake, which limits the utilization of the large amount of nitrate available in agricultural soils. To understand the regulation of nitrate uptake in sugarcane roots, we identified the major canonical nitrate transporter genes (NRTs-NITRATE TRANSPORTERS) and then determined their expression profiles in roots under contrasting N conditions. Correlation of gene expression with 15N-nitrate uptake revealed that under N deprivation or inorganic N (ammonium or nitrate) supply in N-sufficient roots, the regulation of ScNRT2.1 and ScNRT3.1 expression is the predominant mechanism for the modulation of the activity of the nitrate high-affinity transport system. Conversely, in N-deficient roots, the induction of ScNRT2.1 and ScNRT3.1 transcription is not correlated with the marked repression of nitrate uptake in response to nitrate resupply or high N provision, which suggested the existence of a posttranscriptional regulatory mechanism. Our findings suggested that high-affinity nitrate uptake is regulated at the transcriptional and presumably at the posttranscriptional levels based on the physiological N status and that the regulation of NRT2.1 and NRT3.1 activity is likely a determinant mechanism for the discrimination against nitrate uptake observed in sugarcane roots, which contributes to the low NUE in this crop species.


Asunto(s)
Saccharum , Productos Agrícolas , Regulación de la Expresión Génica de las Plantas , Nitratos , Nitrógeno , Raíces de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...