Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Adv Healthc Mater ; : e2400323, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653190

RESUMEN

Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.

2.
Int J Biol Macromol ; 260(Pt 1): 129495, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228209

RESUMEN

DNA's programmable, predictable, and precise self-assembly properties enable structural DNA nanotechnology. DNA nanostructures have a wide range of applications in drug delivery, bioimaging, biosensing, and theranostics. However, physiological conditions, including low cationic ions and the presence of nucleases in biological systems, can limit the efficacy of DNA nanostructures. Several strategies for stabilizing DNA nanostructures have been developed, including i) coating them with biomolecules or polymers, ii) chemical cross-linking of the DNA strands, and iii) modifications of the nucleotides and nucleic acids backbone. These methods significantly enhance the structural stability of DNA nanostructures and thus enable in vivo and in vitro applications. This study reviews the present perspective on the distinctive properties of the DNA molecule and explains various DNA nanostructures, their advantages, and their disadvantages. We provide a brief overview of the biomedical applications of DNA nanostructures and comprehensively discuss possible approaches to improve their biostability. Finally, the shortcomings and challenges of the current biostability approaches are examined.


Asunto(s)
Nanoestructuras , Ácidos Nucleicos , Nanoestructuras/química , Nanotecnología/métodos , ADN/química , Sistemas de Liberación de Medicamentos
3.
J Chem Educ ; 100(9): 3547-3555, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37720521

RESUMEN

Investigating and understanding novel antibacterial agents is a necessary task as there is a constant increase in the number of multidrug-resistant bacterial species. The use of nanotechnology to combat drug-resistant bacteria is an important research area. The laboratory experiment described herein demonstrates that changes in the nanostructure of a material lead to significantly different antibacterial efficacies. Silver has been known to be an effective antibacterial agent throughout history, but its therapeutic uses are limited when present as either the bulk material or cations in solution. Silver nanoparticles (AgNPs) and DNA-templated silver nanoclusters (DNA-AgNCs) are both nanostructured silver materials that show vastly different antibacterial activities when incubated with E. coli in liquid culture. This work aims to provide students with hands-on experience in the synthesis and characterization of nanomaterials and basic microbiology skills; moreover, it is applicable to undergraduate and graduate curricula.

4.
Methods Mol Biol ; 2709: 205-210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37572282

RESUMEN

Nanomaterials have been extensively used for the delivery of nucleic acids. This is attributed to the unique features of nanoparticles to carry genetic material with different physiochemical properties. Mesoporous silica nanoparticles (MSNPs) are a versatile platform for the efficient delivery of nuclei acid-based materials. In this chapter, we describe the synthesis of MSNPs to efficiently transport nucleic acid nanoparticles.

5.
Pharmaceutics ; 15(5)2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37242794

RESUMEN

Photodynamic therapy (PDT) is a promising anticancer noninvasive technique that relies on the generation of reactive oxygen species (ROS). Unfortunately, PDT still has many limitations, including the resistance developed by cancer cells to the cytotoxic effect of ROS. Autophagy, which is a stress response mechanism, has been reported as a cellular pathway that reduces cell death following PDT. Recent studies have demonstrated that PDT in combination with other therapies can eliminate anticancer resistance. However, combination therapy is usually challenged by the differences in the pharmacokinetics of the drugs. Nanomaterials are excellent delivery systems for the efficient codelivery of two or more therapeutic agents. In this work, we report on the use of polysilsesquioxane (PSilQ) nanoparticles for the codelivery of chlorin-e6 (Ce6) and an autophagy inhibitor for early- or late-stage autophagy. Our results, obtained from a reactive oxygen species (ROS) generation assay and apoptosis and autophagy flux analyses, demonstrate that the reduced autophagy flux mediated by the combination approach afforded an increase in the phototherapeutic efficacy of Ce6-PSilQ nanoparticles. We envision that the promising results in the use of multimodal Ce6-PSilQ material as a codelivery system against cancer pave the way for its future application with other clinically relevant combinations.

6.
Int. microbiol ; 26(2): 379-387, May. 2023. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-220229

RESUMEN

The COVID-19 pandemic involving SARS-CoV-2 has raised interest in using antimicrobial lipid formulations to inhibit viral entry into their host cells or to inactivate them. Lipids are a part of the innate defense mechanism against pathogens. Here, we evaluated the use of nano-monocaprin (NMC) in inhibiting enveloped (phi6) and unenveloped (MS2) bacteriophages. NMC was prepared using the sonochemistry technique. Size and morphology analysis revealed the formation of ~ 8.4 ± 0.2-nm NMC as measured by dynamic light scattering. We compared the antiviral activity of NMC with molecular monocaprin (MMC) at 0.5 mM and 2 mM concentrations against phi6, which we used as a surrogate for SARS-CoV-2. The synthesized NMC exhibited 50% higher antiviral activity against phi6 than MMC at pH 7 using plaque assay. NMC inactivated phi6 stronger at pH 4 than at pH 7. To determine if NMC is toxic to mammalian cells, we used MTS assay to assess its IC50 for HPDE and HeLa cell lines, which were ~ 203 and 221 µM, respectively. NMC may be used for prophylactic application either as a drop or spray since many viruses enter the human body through the mucosal lining of the nose, eyes, and lungs.(AU)


Asunto(s)
Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Pandemias , Bacteriófagos , Lípidos , Infecciones por Coronavirus/epidemiología , Antiinfecciosos , Microbiología , Técnicas Microbiológicas
7.
Int Microbiol ; 26(2): 379-387, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36422769

RESUMEN

The COVID-19 pandemic involving SARS-CoV-2 has raised interest in using antimicrobial lipid formulations to inhibit viral entry into their host cells or to inactivate them. Lipids are a part of the innate defense mechanism against pathogens. Here, we evaluated the use of nano-monocaprin (NMC) in inhibiting enveloped (phi6) and unenveloped (MS2) bacteriophages. NMC was prepared using the sonochemistry technique. Size and morphology analysis revealed the formation of ~ 8.4 ± 0.2-nm NMC as measured by dynamic light scattering. We compared the antiviral activity of NMC with molecular monocaprin (MMC) at 0.5 mM and 2 mM concentrations against phi6, which we used as a surrogate for SARS-CoV-2. The synthesized NMC exhibited 50% higher antiviral activity against phi6 than MMC at pH 7 using plaque assay. NMC inactivated phi6 stronger at pH 4 than at pH 7. To determine if NMC is toxic to mammalian cells, we used MTS assay to assess its IC50 for HPDE and HeLa cell lines, which were ~ 203 and 221 µM, respectively. NMC may be used for prophylactic application either as a drop or spray since many viruses enter the human body through the mucosal lining of the nose, eyes, and lungs.


Asunto(s)
Antivirales , COVID-19 , Animales , Humanos , Antivirales/farmacología , SARS-CoV-2 , Células HeLa , Pandemias , Mamíferos
8.
Mater Adv ; 3(24): 9090-9102, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36545324

RESUMEN

The widespread increase in antibiotic resistance (AR), in an extensive range of microorganisms, demands the development of alternative antimicrobials with novel non-specific low-mutation bacterial targets. Silver nanoparticles (AgNPs) and photosensitizers (PSs) are promising antimicrobial agents with broad-spectrum activity and low tendency for antimicrobial resistance development. Herein, we investigated the light-mediated oxidation of AgNPs for accelerated release of Ag+ in the antibacterial synergy of PS-AgNP conjugates using protoporphyrin IX (PpIX) as a PS. Also, the influence of polyethyleneimine (PEI) coated AgNPs in promoting antibacterial activity was examined. We synthesized, characterized and tested the antimicrobial effect of three nanoparticles: AgNPs, PpIX-AgNPs, and PEI-PpIX-AgNPs against a methicillin-resistant Staphylococcus aureus strain (MRSA) and a wild-type multidrug resistant (MDR) E. coli. PpIX-AgNPs were the most effective material achieving >7 log inactivation of MRSA and MDR E. coli. The order of bacterial log inactivation was PpIX-AgNPs > PEI-PpIX-AgNPs > AgNPs. This order correlates with the trend of Ag+ concentration released by the NPs (PpIX-AgNPs > PEI-PpIX-AgNPs > AgNPs). Our study confirms a synergistic effect between PpIX and AgNPs in the inactivation of AR pathogens with about 10-fold increase in inactivation of ARB relative to AgNPs only. The concentration of Ag+ released from NPs determined the log inactivation of MRSA and MDR E. coli more than either the phototoxic effect or the electrostatic interaction promoted by surface charge of nanoparticles with bacteria cells. All NPs showed negligible cytotoxicity to mammalian cells at the bacterial inhibitory concentration after 24 h exposure. These observations confirm the crucial role of optimized Ag+ release for enhanced performance of AgNP-based antimicrobials against AR pathogens.

9.
Adv Drug Deliv Rev ; 187: 114357, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605679

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers due to its aggressiveness and the challenges for early diagnosis and treatment. Recently, nanotechnology has demonstrated relevant strategies to overcome some of the major clinical issues in the treatment of PDAC. This review is focused on the pathological hallmarks of PDAC and the impact of nanotechnology to find solutions. It describes the use of nanoparticle-based systems designed for the delivery of chemotherapeutic agents and combinatorial alternatives that address the chemoresistance associated with PDAC, the development of combination therapies targeting the molecular heterogeneity in PDAC, the investigation of novel therapies dealing with the improvement of immunotherapy and handling the desmoplastic stroma in PDAC by remodeling the tumor microenvironment. A special section is dedicated to the design of nanoparticles for unique non-traditional modalities that could be promising in the future for the improvement in the dismal prognosis of PDAC.


Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Adenocarcinoma , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Microambiente Tumoral
10.
J Control Release ; 347: 425-434, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569588

RESUMEN

Therapeutic success in the treatment of pancreatic ductal adenocarcinoma (PDAC) is hindered by the extensive stroma associated to this disease. Stroma is composed of cellular and non-cellular components supporting and evolving with the tumor. One of the most studied mediators of cancer cell-stroma crosstalk is sonic hedgehog (SHh) pathway leading to the intense desmoplasia observed in PDAC tumors. Herein, we demonstrate that the use of mesoporous silica nanoparticles (MSNs) containing an SHh inhibitor, cyclopamine (CyP), and the combination of chemotherapeutic drugs (Gemcitabine (Gem)/cisplatin (cisPt)) as the main delivery system for the sequential treatment led to the reduction in tumor stroma along with an improvement in the treatment of PDAC. We synthesized two versions of the MSN-based platform containing the SHh inhibitor (CyP-MSNs) and the drug combination (PEG-Gem-cisPt-MSNs). In vitro and in vivo protein analysis show that CyP-MSNs effectively inhibited the SHh pathway. In addition, the sequential combination of CyP-MSNs followed by PEG-Gem-cisPt-MSNs led to effective stromal modulation, increased access of secondary PEG-Gem-cisPt-MSNs at the tumor site, and improved therapeutic performance in HPAF II xenograft mice. Taken together, our findings support the potential of drug delivery using MSNs for stroma modulation and to prevent pancreatic cancer progression.


Asunto(s)
Carcinoma Ductal Pancreático , Sistemas de Liberación de Medicamentos , Nanopartículas , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Neoplasias Pancreáticas/patología , Dióxido de Silicio/uso terapéutico , Neoplasias Pancreáticas
11.
Small ; 18(2): e2104449, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758094

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an intractable malignancy with a dismal survival rate. Recent combination therapies have had a major impact on the improvement of PDAC prognosis. Nevertheless, clinically used combination regimens such as FOLFIRINOX and gemcitabine (Gem)/nab-paclitaxel still face major challenges due to lack of the safe and ratiometric delivery of multiple drugs. Here, a rationally designed mesoporous silica nanoparticle (MSN)-based platform is reported for the target-specific, spatiotemporal, ratiometric, and safe co-delivery of Gem and cisplatin (cisPt). It is shown that systemic administration of the nanoparticles results in synergistic therapeutic outcome in a syngeneic and clinically relevant genetically engineered PDAC mouse model that has rarely been used for the therapeutic evaluation of nanomedicine. This synergism is associated with a strategic engineering approach, in which nanoparticles provide redox-responsive controlled delivery and in situ differential release of Gem/cisPt drugs with the goal of overcoming resistance to Pt-based drugs. The platform is also rendered with additional tumor-specificity via a novel tumor-associated mucin1 (tMUC1)-specific antibody, TAB004. Overall, the platform suppresses tumor growth and eliminates the off-target toxicities of a highly toxic chemotherapy combination.


Asunto(s)
Neoplasias Pancreáticas , Albúminas , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cisplatino/farmacología , Cisplatino/uso terapéutico , Desoxicitidina/análogos & derivados , Ratones , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Resultado del Tratamiento , Gemcitabina
13.
Molecules ; 26(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34770861

RESUMEN

Polyhedral oligomeric silsesquioxanes (POSS) have attracted considerable attention in the design of novel organic-inorganic hybrid materials with high performance capabilities. Features such as their well-defined nanoscale structure, chemical tunability, and biocompatibility make POSS an ideal building block to fabricate hybrid materials for biomedical applications. This review highlights recent advances in the application of POSS-based hybrid materials, with particular emphasis on drug delivery, photodynamic therapy and bioimaging. The design and synthesis of POSS-based materials is described, along with the current methods for controlling their chemical functionalization for biomedical applications. We summarize the advantages of using POSS for several drug delivery applications. We also describe the current progress on using POSS-based materials to improve photodynamic therapies. The use of POSS for delivery of contrast agents or as a passivating agent for nanoprobes is also summarized. We envision that POSS-based hybrid materials have great potential for a variety of biomedical applications including drug delivery, photodynamic therapy and bioimaging.


Asunto(s)
Sistemas de Liberación de Medicamentos , Imagen Óptica , Compuestos de Organosilicio/química , Fotoquimioterapia , Medios de Contraste/química , Humanos , Compuestos de Organosilicio/síntesis química
14.
Nanomaterials (Basel) ; 11(9)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34578640

RESUMEN

The use of nanoparticle-based materials to improve the efficacy of photodynamic therapy (PDT) to treat cancer has been a burgeoning field of research in recent years. Polysilsesquioxane (PSilQ) nanoparticles with remarkable features, such as high loading of photosensitizers, biodegradability, surface tunability, and biocompatibility, have been used for the treatment of cancer in vitro and in vivo using PDT. The PSilQ platform typically shows an enhanced PDT performance following a cell death mechanism similar to the parent photosensitizer. Ferroptosis is a new cell death mechanism recently associated with PDT that has not been investigated using PSilQ nanoparticles. Herein, we synthesized a protoporphyrin IX (PpIX)-based PSilQ platform (PpIX-PSilQ NPs) to study the cell death pathways, with special focus on ferroptosis, during PDT in vitro. Our data obtained from different assays that analyzed Annexin V binding, glutathione peroxidase activity, and lipid peroxidation demonstrate that the cell death in PDT using PpIX-PSilQ NPs is regulated by apoptosis and ferroptosis. These results can provide alternative approaches in designing PDT strategies to enhance therapeutic response in conditions stymied by apoptosis resistance.

15.
Molecules ; 26(12)2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-34203098

RESUMEN

In this work, gold NPs were prepared by the Turkevich method, and their interaction with HPV and cancerous cervical tissues were studied by scanning electron microscopy, energy-dispersive x-ray spectroscopy, confocal and multiphoton microscopy and SERS. The SEM images confirmed the presence and localization of the gold NPs inside of the two kinds of tissues. The light absorption of the gold NPs was at 520 nm. However, it was possible to obtain two-photon imaging (red emission region) of the gold NPs inside of the tissue, exciting the samples at 900 nm, observing the morphology of the tissues. The infrared absorption was probably due to the aggregation of gold NPs inside the tissues. Therefore, through the interaction of gold nanoparticles with the HPV and cancerous cervical tissues, a surface enhanced Raman spectroscopy (SERS) was obtained. As preliminary studies, having an average of 1000 Raman spectra per tissue, SERS signals showed changes between the HPV-infected and the carcinogenic tissues; these spectral signatures occurred mainly in the DNA bands, potentially offering a tool for the rapid screening of cancer.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Microscopía Electrónica de Rastreo/métodos , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/complicaciones , Espectrometría Raman/métodos , Neoplasias del Cuello Uterino/diagnóstico , ADN/química , Femenino , Humanos , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/virología
16.
Molecules ; 25(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120986

RESUMEN

Polyhedral oligomeric silsesquioxane (POSS) is a promising scaffold to be used as delivery system. POSS can modify the properties of photosensitizers to enhance their efficacy toward photodynamic therapy (PDT). In this work, we designed, synthesized and characterized five different POSS porphyrin (POSSPs 1-5) derivatives containing hydrophobic (1-3) and hydrophilic (4 and 5) functional groups. In general, all the POSSPs showed a better singlet oxygen quantum yield than the parent porphyrins due to the steric hindrance from the POSS unique structure. POSSPs 1 and 3 containing isobutyl groups showed better PDT performance in cancer cells at lower concentrations than POSSPs 4 and 5. However; at higher concentrations, the POSSP4 containing hydrophilic groups has an enhanced PDT efficiency as compared with the parent porphyrin. We envision that the chemical tunability of POSSs can be used as a promising option to improve the delivery and performance of photosensitizers.


Asunto(s)
Compuestos de Organosilicio/química , Compuestos de Organosilicio/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Polimerizacion , Porfirinas/química , Línea Celular Tumoral , Humanos , Compuestos de Organosilicio/síntesis química , Fármacos Fotosensibilizantes/síntesis química
17.
ACS Appl Mater Interfaces ; 12(35): 38873-38886, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805923

RESUMEN

Programmable nucleic acid nanoparticles (NANPs) with precisely controlled functional compositions can regulate the conditional activation of various biological pathways and responses in human cells. However, the intracellular delivery of NANPs alone is hindered by their susceptibility to nuclease activity and inefficient crossing of biological membranes. In this work, we optimized the internalization and therapeutic performance of several representative NANPs delivered with mesoporous silica nanoparticles (MSNPs) tailored for efficient electrostatic association with NANPs. We compared the immunostimulatory properties of different NA-MS-NP complexes formed with globular, planar, and fibrous NANPs and demonstrated the maximum immunostimulation for globular NANPs. As a proof of concept, we assessed the specific gene silencing by NA-MS-NP complexes functionalized with siRNA targeting green fluorescent protein expressed in triple-negative human breast cancer cells. We showed that the fibrous NANPs have the highest silencing efficiency when compared to globular or planar counterparts. Finally, we confirmed the multimodal ability of MSNPs to co-deliver a chemotherapy drug, doxorubicin, and NANPs targeting apoptosis regulator gene BCL2 in triple-negative breast cancer and melanoma cell lines. Overall, the combination of NANPs and MSNPs may become a new promising approach to efficiently treat cancer and other diseases via the simultaneous targeting of various pathways.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Ácidos Nucleicos/química , Dióxido de Silicio/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Porosidad , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo
18.
Int J Biomater ; 2020: 2514387, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32802065

RESUMEN

Invasive candidiasis (IC) remains as a major cause of morbidity and mortality in critically ill patients. Amphotericin B (AmB) is one of the most effective antifungal agents commonly used to treat this infection. However, it induces severe side effects such as nephrotoxicity, cardiac alterations, nausea, fever, and liver damage. The utilization of drug delivery systems has been explored to overcome these limitations. Several AmB lipid formulations have been developed and are currently available in the market. Although they have the ability to reduce the main side effects of free AmB, their high cost, necessity of repeated intravenous injections for successful treatment, and incidence of pulmonary toxicity have limited their use. In the last decades, alginate has gained significant interest in drug delivery applications as a cost-effective strategy to improve the safety and therapeutic effect of toxic drugs. In this work, the clinically relevant drug AmB was encapsulated into alginate microparticles using the emulsification/external gelation method. We hypothesize that this synthesis strategy may positively impact the antifungal efficacy of AmB-loaded MCPs toward Candida albicans cells while reducing the toxicity in human lung cells. To prove this hypothesis, the ability of the microplatform to disrupt the cellular membrane potential was tested and its antifungal effectiveness toward Candida albicans cells was evaluated using the cell counting and plate count methods. Moreover, the toxicity of the microplatform in human lung cells was evaluated using CellTiter 96® AQueous cell viability assay and qualitative diffusion analysis of acridine orange. Our results demonstrated that the platform developed in this work was able to induce antifungal toxicity against Candida albicans yeast cells at the same level of free AmB with minimal toxicity to lung cells, which is one of the main side effects induced by commercial drug delivery systems containing AmB. Overall, our data provides convincing evidence about the effectiveness of the alginate-based microplatform toward Candida albicans cells. In addition, this vehicle may not require several infusions for a successful treatment while reducing the pulmonary toxic effect induced by commercial lipid formulations.

19.
J Mater Chem B ; 7(46): 7396-7405, 2019 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-31701111

RESUMEN

Chronic liver dysfunction often begins with hepatic fibrosis. A pivotal event in the progression of liver fibrosis and cirrhosis is hepatic stellate cell (HSC) activation and secretion of extracellular matrix proteins, including tenascin-C (TnC). TnC is often chosen as a therapeutic target for treatment of liver disease. TnC is minimally detected in healthy tissue, but is transiently expressed during tissue injury, and plays a critical role in fibrogenesis and tumorigenesis. siRNA therapy is a promising alternative to knock-down proteins relevant for fibrosis therapy. This study describes the application of a functionalized mesoporous silica nanoparticles (MSNs) for the efficient transport and delivery of siTnC in HSCs. Silencing experiments in HSCs demonstrate the effective reduction of TnC mRNA and protein levels. In addition, attenuation of TnC expression due to the cellular uptake and release of siTnC from MSNs resulted in decreases of inflammatory cytokine levels and hepatocyte migration. We envision this siTnC-MSN platform as a promising alternative to evaluate siRNA therapy of chronic liver disease in preclinical trials.


Asunto(s)
Silenciador del Gen , Células Estrelladas Hepáticas/citología , Nanopartículas/química , Tenascina/genética , Animales , Movimiento Celular , Supervivencia Celular , Progresión de la Enfermedad , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica , Hepatocitos/citología , Humanos , Inflamación , Hígado/citología , Cirrosis Hepática/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Nanomedicina , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Dióxido de Silicio/química
20.
ACS Appl Mater Interfaces ; 11(13): 12308-12320, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30844224

RESUMEN

Multifunctional hybrid nanoparticles are being developed to carry a wide variety of therapeutic and imaging agents for multiple biomedical applications. Polysilsesquioxane (PSilQ) nanoparticles are a promising hybrid platform with numerous advantages to be used as a delivery system. In this report, we demonstrate the ability of a stimuli-responsive PSilQ-based platform to transport and deliver simultaneously protoporphyrin IX, curcumin, and RNA interference inducers inside human cells. This multimodal delivery system shows a synergistic performance for the combined phototherapy and chemotherapy of triple-negative breast cancer and can be used for efficient transfection of therapeutic nucleic acids. The current work represents the first report of using the PSilQ platform for the combined phototherapy and chemotherapy and gene delivery.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Terapia Genética , Nanopartículas/química , Compuestos de Organosilicio , Fotoquimioterapia , Neoplasias de la Mama Triple Negativas , Doxorrubicina/química , Doxorrubicina/farmacocinética , Femenino , Humanos , Células MCF-7 , Compuestos de Organosilicio/química , Compuestos de Organosilicio/farmacología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...