Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 344: 140351, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797899

RESUMEN

Mining activity drives economic development and has established itself as one of the main industrial spheres globally. However, illegal, and artisanal gold mining, which uses mercury (Hg), is a major source of global pollution. Hg is highly toxic and persistent in the environment, affecting human health and the ecosystem. The objective of this research is to; (a) analyze Hg concentrations in surface waters of nine provinces of the Andean region of Ecuador and compare them with the maximum permissible limits of Ecuadorian regulations, and (b) evaluate the health risk of people exposed to waters with high Hg content through residential and recreational scenarios. In this study, 147 water samples from rivers and streams were analyzed. The results revealed worrying levels of Hg, especially in the provinces of Azuay and Loja where Hg values of up to 0.0913 mg/L and 0.0387 mg/L, respectively, were detected. In addition, it was found that 45% of the samples did not meet the water quality criteria for the preservation of aquatic life, which represents a severe risk to the ecosystem. The probabilistic risk analysis yielded values that exceeded the acceptable exposure limit for adults and children in residential settings in Azuay and Loja, while in the recreational scenario the safe exposure limit was exceeded for both receptors only in the province of Azuay. The elevated presence of Hg in the provinces, mainly in Azuay and Loja, possibly related to illegal gold mining activity, represents a threat to water quality and aquatic life in the Andean region of Ecuador. Children are especially vulnerable, and effective regulation is required to ensure the safety of the population. This study provides valuable information for decision makers regarding the risk associated with Hg exposure in areas of mining activity in the Ecuadorian Andean region. In addition, it can contribute to the development of policies and strategies to control contamination in mining environments and protect human and environmental health in the region.


Asunto(s)
Mercurio , Niño , Adulto , Humanos , Mercurio/análisis , Oro/análisis , Ecuador , Ecosistema , Minería , Medición de Riesgo , Calidad del Agua , Monitoreo del Ambiente
2.
Environ Geochem Health ; 45(10): 7183-7197, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37160830

RESUMEN

Illegal gold mining activities have contributed to the release and mobilization of Hg and environmental degradation in many parts of the world. This study aims to determine the concentration of Hg in five provinces of the Amazon Region of Ecuador, in addition to assessing the risk to human health of exposed populations, applying deterministic and probabilistic methods. For this purpose, 147 water samples were collected in rivers and streams crossing and/or located near mining areas. As a result, 100% of the samples analyzed exceeded the maximum permissible limit (MPL) according to the water quality criteria for the preservation of aquatic life of the Ecuadorian regulations, while 7% of the samples exceeded the MPL for drinking water. On the other hand, considering the European Environmental Quality Standard (EQS) for surface water bodies, in our study, 100% of the samples exceed the maximum permissible limit (0.07 µg/L), and with respect to the Canadian water quality guidelines, 35% of the samples exceed the permissible limit (0.001 mg/l) for drinking water, and 100% of the samples exceed the limit for life in water bodies (0.0001 mg/l). The risk assessment revealed that the probability of developing adverse health effects from exposure to Hg is below the recommended limits according to the probabilistic assessment; this is in relation to the criterion of residential and recreational use of water resources. However, it was identified that the child population doubles the acceptable systemic risk level according to the results of the deterministic assessment in the residential scenario. This information can be used by decision-makers to implement strategies to reduce Hg contamination and exposure of the population in Ecuadorian Amazonian rivers.


Asunto(s)
Agua Potable , Mercurio , Contaminantes Químicos del Agua , Niño , Humanos , Ríos , Ecuador , Contaminantes Químicos del Agua/análisis , Canadá , Mercurio/análisis , Medición de Riesgo , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA