Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928083

RESUMEN

Since transcription factor Forkhead Box P3 (FoxP3) was identified as a specific regulatory T cell (Treg) marker, researchers have scrutinized its value as a potential novel therapeutic target or a prognostic factor in various types of cancer with inconsistent results. The present analysis was performed to assess the influence of Treg FoxP3 expression on the prognosis of primary melanoma and to evaluate the correlations with various clinicopathological prognostic factors. We analyzed all eligible patients with stage pT3 primary malignant melanomas treated in a tertiary cancer center. Immunohistochemical staining for Treg FoxP3 expression was performed on retrospectively identified paraffin blocks and subsequently correlated with the outcomes of the patients. A total of 81% of the patients presented a positive Treg FoxP3 expression, being correlated with a higher risk of lymph node metastasis, tumor relapse, and death. Moreover, positive expression was statistically associated with a shorter OS. The tumor relapse rate was estimated at 36.7%. A positive expression of Treg FoxP3 and lymph node metastasis were associated with a higher risk of death based on multivariate analysis. Treg FoxP3 expression may be used as an independent prognostic factor in patients with malignant melanoma to evaluate tumor progression and survival.


Asunto(s)
Factores de Transcripción Forkhead , Melanoma , Linfocitos T Reguladores , Humanos , Factores de Transcripción Forkhead/metabolismo , Melanoma/patología , Melanoma/metabolismo , Melanoma/inmunología , Melanoma/mortalidad , Masculino , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Femenino , Persona de Mediana Edad , Pronóstico , Anciano , Adulto , Metástasis Linfática , Biomarcadores de Tumor/metabolismo , Estudios Retrospectivos , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/mortalidad , Anciano de 80 o más Años , Recurrencia Local de Neoplasia/patología
2.
ACS Appl Mater Interfaces ; 16(26): 34266-34280, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904375

RESUMEN

Two different types of electrolytes (co-solvent and multi-salt) are tested for use in high voltage LiNi0.5Mn1.5O4||Si/graphite full cells and compared against a carbonate-based standard LiPF6 containing electrolyte (baseline). Ex situ postmortem XPS analysis on both anodes and cathodes over the life span of the cells reveals a continuously growing SEI and CEI for the baseline electrolyte. The cells cycled in the co-solvent electrolyte exhibited a relatively thick and long-term stable CEI (on LNMO), while a slowly growing SEI was determined to form on the Si/graphite. The multi-salt electrolyte offers more inorganic-rich SEI/CEI while also forming the thinnest SEI/CEI observed in this study. Cross-talk is identified in the baseline electrolyte cell, where Si is detected on the cathode, and Mn is detected on the anode. Both the multi-salt and co-solvent electrolytes are observed to substantially reduce this cross-talk, where the co-solvent is found to be the most effective. In addition, Al corrosion is detected for the multi-salt electrolyte mainly at its end-of-life stage, where Al can be found on both the anode and cathode. Although the co-solvent electrolyte offers superior interface properties in terms of the limitation of cross-talk, the multi-salt electrolyte offers the best overall performance, suggesting that interface thickness plays a superior role compared to cross-talk. Together with their electrochemical cycling performance, the results suggest that multi-salt electrolyte provides a better long-term passivation of the electrodes for high-voltage cells.

3.
Adv Mater ; : e2312908, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843480

RESUMEN

The emergence of solid-state battery technology presents a potential solution to the dissolution challenges of high-capacity small molecule quinone redox systems. Nonetheless, the successful integration of argyrodite-type Li6PS5Cl, the most promising solid-state electrolyte system, and quinone redox systems remains elusive due to their inherent reactivity. Here, a library of quinone derivatives is selected as model electrode materials to ascertain the critical descriptors governing the (electro)chemical compatibility and subsequently the performances of Li6PS5Cl-based solid-state organic lithium metal batteries (LMBs). Compatibility is attained if the lowest unoccupied molecular orbital level of the quinone derivative is sufficiently higher than the highest occupied molecular orbital level of Li6PS5Cl. The energy difference is demonstrated to be critical in ensuring chemical compatibility during composite electrode preparation and enable high-efficiency operation of solid-state organic LMBs. Considering these findings, a general principle is proposed for the selection of quinone derivatives to be integrated with Li6PS5Cl, and two solid-state organic LMBs, based on 2,5-diamino-1,4-benzoquinone and 2,3,5,6-tetraamino-1,4-benzoquinone, are successfully developed and tested for the first time. Validating critical factors for the design of organic battery electrode materials is expected to pave the way for advancing the development of high-efficiency and long cycle life solid-state organic batteries based on sulfides electrolytes.

4.
Medicina (Kaunas) ; 60(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38929570

RESUMEN

Several cases reported in the literature have confirmed the link between pulmonary aspergillosis and various malignant diseases. Furthermore, it has been observed that the correlation between carcinoid tumor and lung adenocarcinoma is quite uncommon. The etiopathogenic mechanisms underlying these correlations remain poorly defined. We present the case of a patient with three of these diseases: a lung adenocarcinoma with a lepidic pattern, a typical carcinoid, and pulmonary aspergillosis. An additional noteworthy aspect of this case pertains to the timely detection of both lung malignancies. Thus, the necessity for further investigation to ascertain the pathogenic connection among the three diseases is underscored. The ultimate objective is to enhance the prognosis of individuals diagnosed with lung cancer, which is a prevailing malignant disease on a global scale.


Asunto(s)
Tumor Carcinoide , Neoplasias Pulmonares , Aspergilosis Pulmonar , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/diagnóstico , Aspergilosis Pulmonar/complicaciones , Aspergilosis Pulmonar/diagnóstico , Tumor Carcinoide/complicaciones , Adenocarcinoma/complicaciones , Masculino , Adenocarcinoma del Pulmón/complicaciones , Persona de Mediana Edad , Anciano
5.
Small ; : e2401509, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698603

RESUMEN

Micro-supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large-scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double-layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal-organic frameworks (MOFs). However, techniques for conformal deposition at micro- and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non-sacrificial anodic electrochemical deposition of Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 - Ni3(HITP)2, a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni3(HITP)2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni3(HITP)2 nanotubes and Pt@ Ni3(HITP)2 core-shell nanowires. Based on the optimal electrodeposition protocols, Ni3(HITP)2 films interdigitated micro-supercapacitors are fabricated and tested as a proof of concept.

6.
Molecules ; 29(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675662

RESUMEN

Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols. The variables of the PNP conversion process and p-aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10-3 s-1 for n-dodecanol and 0.9 × 10-3 s-1 for n-decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p-aminophenol in the acid-receiving phase.

7.
Medicina (Kaunas) ; 60(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38541163

RESUMEN

Background and Objectives: This paper aims to assess the role of laser therapy in periodontitis through an innovative approach involving computational prediction and advanced modeling performed through network analysis (Gaussian graphical models-GGMs) and structural equations (SEM). Materials and Methods: Forty patients, exhibiting periodontal pockets with a minimum depth of 5 mm, were randomly divided into two groups: a control group and a laser group. Four specific indicators were measured for each tooth, namely periodontal pocket depth (PPD), clinical attachment level (CAL), bleeding on probing (BOP), and plaque index (PI), and the mean of six measured values was recorded at five time markers (baseline, 6 months, 1 year, 2 years, and 4 years). The assessment algorithm included enrollment, measurements, and differential non-surgical periodontal treatment, according to the group allocation. Scaling, root planing, and chlorhexidine 1% were conducted for the control group, and scaling, root planing and erbium, chromium:yttrium-scandium-gallium-garnet (Er,CR:YSGG) laser therapy were conducted for the laser group. Results: The main results highlight that the addition of laser treatment to scaling and root planing led to notable clinical improvements, decreasing the PPD values, reducing the BOP scores, and increasing the CAL. Conclusions: Notable relationships between the specific indicators considered were highlighted by both the GGMs and by SEM, thus confirming their suitability as proxies for the success of periodontal treatment.


Asunto(s)
Terapia por Láser , Terapia por Luz de Baja Intensidad , Periodontitis , Humanos , Análisis de Clases Latentes , Periodontitis/radioterapia , Periodontitis/cirugía , Terapia por Láser/métodos , Aplanamiento de la Raíz/métodos , Estudios de Seguimiento
8.
Toxics ; 12(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393198

RESUMEN

The recovery and recycling of metals that generate toxic ions in the environment is of particular importance, especially when these are tungsten and, in particular, thorium. The radioactive element thorium has unexpectedly accessible domestic applications (filaments of light bulbs and electronic tubes, welding electrodes, and working alloys containing aluminum and magnesium), which lead to its appearance in electrical and electronic waste from municipal waste management platforms. The current paper proposes the simultaneous recovery of waste containing tungsten and thorium from welding electrodes. Simultaneous recovery is achieved by applying a hybrid membrane electrolysis technology coupled with nanofiltration. An electrolysis cell with sulphonated polyether-ether-ketone membranes (sPEEK) and a nanofiltration module with chitosan-polypropylene membranes (C-PHF-M) are used to carry out the hybrid process. The analysis of welding electrodes led to a composition of W (tungsten) 89.4%; Th 7.1%; O2 2.5%; and Al 1.1%. Thus, the parameters of the electrolysis process were chosen according to the speciation of the three metals suggested by the superimposed Pourbaix diagrams. At a constant potential of 20.0 V and an electrolysis current of 1.0 A, the pH is varied and the possible composition of the solution in the anodic workspace is analyzed. Favorable conditions for both electrolysis and nanofiltration were obtained at pH from 6 to 9, when the soluble tungstate ion, the aluminum hydroxide, and solid thorium dioxide were formed. Through the first nanofiltration, the tungstate ion is obtained in the permeate, and thorium dioxide and aluminum hydroxide in the concentrate. By adding a pH 13 solution over the two precipitates, the aluminum is solubilized as sodium aluminate, which will be found after the second nanofiltration in the permeate, with the thorium dioxide remaining integrally (within an error of ±0.1 ppm) on the C-PHF-M membrane.

9.
Data Brief ; 53: 110093, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328280

RESUMEN

Wire arc additive manufacturing is considered to allow a reduced material consumption for structural steel components by efficiently distributing the material only where necessary. Parts produced with this technology exhibit an irregular, imperfect geometry, which influences their structural behaviour. This paper describes a dataset, which includes geometry information for point-by-point wire arc additively manufactured steel bars, force and displacement measurements from performed uniaxial tensile tests on such bars, and force and displacement values from geometrically and materially non-linear simulations of the bars with imperfect geometry. The geometry data was obtained by 3D scanning the steel bars. Moreover, a script is provided that allows processing the scanned geometry data such that it can be used to generate suitable finite element meshes for geometrically and materially non-linear analyses. The force and displacement data from the uniaxial tensile tests were collected through measurements with a load cell for the force and with the help of digital image correlation measurements for the displacements. The non-linear simulations of the experiments were conducted with the computer aided engineering software Abaqus on processed approximations of the irregular scanned geometry. The described dataset can be used for better understanding the influence of the irregular geometry on the structural behaviour of wire arc additively manufactured parts. Moreover, researchers can apply the data to validate finite element simulation models and approaches for predicting the structural behaviour of different wire arc additively manufactured parts.

10.
Angew Chem Int Ed Engl ; 63(18): e202402526, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38415379

RESUMEN

Electrically conductive metal-organic frameworks (MOFs) are promising candidates for electrochemical capacitors (EC) for fast energy storage due to their high specific surface areas and potential for redox activity. To maximize energy density, traditional inorganic pseudocapacitors have utilized faradaic processes in addition to double-layer capacitance. Although conductive MOFs are usually comprised of redox active ligands which allow faradaic reactions upon electrochemical polarization, systematic studies providing deeper understanding of the charge storage processes and structure-function relationships have been scarce. Here, we investigate the charge storage mechanisms of a series of triazatruxene-based 2D layered conductive MOFs with variable alkyl functional groups, Ni3(HIR3-TAT)2 (TAT=triazatruxene; R=H, Et, n-Bu, n-Pent). Functionalization of the triazatruxene core allows for systematic variation of structural parameters while maintaining in-plane conjugation between ligands and metals. Specifically, R groups modulate interlayer spacing, which in turn shifts the charge storage mechanism from double-layer capacitance towards pseudocapacitance, leading to an increase in molar specific capacitance from Ni3(HIH3-TAT)2 to Ni3(HIBu3-TAT)2. Partial exfoliation of Ni3(HIBu3-TAT)2 renders redox active ligand moieties more accessible, and thus increases the dominance of faradaic processes. Our strategy of controlling charge storage mechanism through tuning the accessibility of redox-active sites may motivate further design and engineering of electrode materials for EC.

11.
Foods ; 13(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338631

RESUMEN

This research aims to assess the content of some ions and trace elements in water sources in 24 rural Roma communities in Transylvania in order to assess the human health risk associated with exposure to such elements and ions. To this end, eight ions (F-, Cl-, Br-, NO2-, NO3-, SO42-, PO43-, NH4+) and ten trace elements (Cr, Ni, As, Pb, Cd, Mn, Cu, Zn, Fe, and Hg) were determined in 71 water samples by ion chromatography coupled with a conductivity detector for ions and atomic absorption spectrophotometry for all trace elements. General parameters were also determined. Non-conformity (as number of samples), according to the EU Drinking Water Directive, was observed as follows: pH (7), EC (7), hardness (1), oxidizability (15), Cl- (4), NO3- (30), SO42- (6), Fe (16), Mn (14), As (3), and Ni (1 sample). The incidence of ions was Cl- (71), SO42- (70), F- (67), NO3- (65), NH4+ (21), Br- (10), PO43-, and NO2- (1 sample) and for trace elements, Mn (59), Fe (50), As (38), Ni (32), Cu (29), Zn (28), Cd (12), Cr (11), and Pb (3 samples). Hg was not detected. Non-carcinogenic (HI) values exceeded one for As in 13 Roma communities, with higher values for children than for adults. For NO3-, the HI values were >1 in 12 for adults and 14 communities for children. The carcinogenic risk (CR) for As through ingestion ranged from 0.795 to 3.50 × 10-4 for adults and from 1.215 to 5.30 × 10-4 for children. CR by dermal contact was in the range of ×10-6 both for adults and children.

12.
J Liposome Res ; : 1-12, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379249

RESUMEN

The intricate cooperation between cancer cells and nontumor stromal cells within melanoma microenvironment (MME) enables tumor progression and metastasis. We previously demonstrated that the interplay between tumor-associated macrophages (TAMs) and melanoma cells can be disrupted by using long-circulating liposomes (LCLs) encapsulating prednisolone phosphate (PLP) (LCL-PLP) that inhibited tumor angiogenesis coordinated by TAMs. In this study, our goal was to improve LCL specificity for protumor macrophages (M2-like (i.e., TAMs) macrophages) and to induce a more precise accumulation at tumor site by loading PLP into IL-13-conjugated liposomes (IL-13-LCL-PLP), since IL-13 receptor is overexpressed in this type of macrophages. The IL-13-LCL-PLP liposomal formulation was obtained by covalent attachment of thiolated IL-13 to maleimide-functionalized LCL-PLP. C57BL/6 mice bearing B16.F10 s.c melanoma tumors were used to investigate the antitumor action of LCL-PLP and IL-13-LCL-PLP. Our results showed that IL-13-LCL-PLP formulation remained stable in biological fluids after 24h and it was preferentially taken up by M2 polarized macrophages. IL-13-LCL-PLP induced strong tumor growth inhibition compared to nonfunctionalized LCL-PLP at the same dose, by altering TAMs-mediated angiogenesis and oxidative stress, limiting resistance to apoptosis and invasive features in MME. These findings suggest IL-13-LCL-PLP might become a promising delivery platform for chemotherapeutic agents in melanoma.

13.
Energy Environ Sci ; 17(1): 173-182, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173560

RESUMEN

Organic electrode materials have garnered a great deal of interest owing to their sustainability, cost-efficiency, and design flexibility metrics. Despite numerous endeavors to fine-tune their redox potential, the pool of organic positive electrode materials with a redox potential above 3 V versus Li+/Li0, and maintaining air stability in the Li-reservoir configuration remains limited. This study expands the chemical landscape of organic Li-ion positive electrode chemistries towards the 4 V-class through molecular design based on electron density depletion within the redox center via the mesomeric effect of electron-withdrawing groups (EWGs). This results in the development of novel families of conjugated triflimides and cyanamides as high-voltage electrode materials for organic lithium-ion batteries. These are found to exhibit ambient air stability and demonstrate reversible electrochemistry with redox potentials spanning the range of 3.1 V to 3.8 V (versus Li+/Li0), marking the highest reported values so far within the realm of n-type organic chemistries. Through comprehensive structural analysis and extensive electrochemical studies, we elucidate the relationship between the molecular structure and the ability to fine-tune the redox potential. These findings offer promising opportunities to customize the redox properties of organic electrodes, bridging the gap with their inorganic counterparts for application in sustainable and eco-friendly electrochemical energy storage devices.

14.
Plants (Basel) ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256751

RESUMEN

Epilobium hirsutum L., commonly known as hairy willowherb, is a perennial herbaceous plant native to Europe and Asia. In Romania, the Epilobium genus includes 17 species that are used in folk medicine for various purposes. This study aimed to investigate the anti-inflammatory and antitumor potential of the optimized extract of Epilobium hirsutum (EH) in animal models. The first study investigated the anti-inflammatory properties of EH optimized extract and the model used was carrageenan-induced paw inflammation. Wistar rats were divided into three groups: negative control, positive control treated with indomethacin, and a group treated with the extract. Oxidative stress markers, cytokine levels, and protein expressions were assessed. The extract demonstrated anti-inflammatory properties comparable to those of the control group. In the second study, the antitumor effects of the extract were assessed using the tumor model of Ehrlich ascites carcinoma. Swiss albino mice with Ehrlich ascites were divided into four groups: negative, positive treated with cyclophosphamide (Cph), Group 3 treated with Cph and EH optimized extract, and Group 4 treated with extract alone. Samples from the ascites fluid, liver, and heart were analyzed to evaluate oxidative stress, inflammation, and cancer markers. The extract showed a reduction in tumor-associated inflammation and oxidative stress. Overall, the EH optimized extract exhibited promising anti-inflammatory and antitumor effects in the animal models studied. These findings suggest its potential as a natural adjuvant therapeutic agent for addressing inflammation and oxidative stress induced by different pathologies.

15.
Nat Commun ; 15(1): 536, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225282

RESUMEN

Rechargeable lithium batteries using 5 V positive electrode materials can deliver considerably higher energy density as compared to state-of-the-art lithium-ion batteries. However, their development remains plagued by the lack of electrolytes with concurrent anodic stability and Li metal compatibility. Here we report a new electrolyte based on dimethyl 2,5-dioxahexanedioate solvent for 5 V-class batteries. Benefiting from the particular chemical structure, weak interaction with lithium cation and resultant peculiar solvation structure, the resulting electrolyte not only enables stable, dendrite-free lithium plating-stripping, but also displays anodic stability up to 5.2 V (vs. Li/Li+), in additive or co-solvent-free formulation, and at low salt concentration of 1 M. Consequently, the Li | |LiNi0.5Mn1.5O4 cells using the 1 M LiPF6 in 2,5-dioxahexanedioate based electrolyte retain >97% of the initial capacity after 250 cycles, outperforming the conventional carbonate-based electrolyte formulations, making this, and potentially other dicarbonate solvents promising for future Lithium-based battery practical explorations.

16.
Food Chem Toxicol ; 183: 114314, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052407

RESUMEN

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is a growing global concern with an increasing incidence rate. The intestinal microbiota has been identified as a potential culprit in modulating the effects of antitumoral drugs. We aimed to assess the impact of adding Lactobacillus rhamnosus probiotic to regorafenib in mice with HCC. METHODS: Cirrhosis and HCCs were induced in 56 male Swiss mice via diethylnitrosamine injection and carbon tetrachloride administration. Mice were divided into four groups: treated with vehicle (VC), regorafenib (Rego), L. rhamnosus probiotic, and a combination of regorafenib and probiotic (Rego-Pro). After 3 weeks of treatment, liver and intestinal fragments were collected for analysis. RESULTS: Regorafenib elevated gut permeability, an effect mitigated by probiotic intervention, which exhibited a notable correlation with reduced inflammation (p < 0.01). iNOS levels were also reduced by adding the probiotic with respect to the mice treated with regorafenib only (p < 0.001). Notably, regorafenib substantially increased IL-6, TNF-a and TLR4 in intestinal fragments (p < 0.01). The administration of the probiotic effectively restored IL-6 to its initial levels (p < 0.001). CONCLUSION: Reducing systemic and intestinal inflammation by administering L. rhamnosus probiotic may alleviate tumoral resistance and systemic adverse effects.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis , Lacticaseibacillus rhamnosus , Neoplasias Hepáticas , Probióticos , Ratones , Masculino , Animales , Carcinoma Hepatocelular/terapia , Interleucina-6 , Modelos Animales de Enfermedad , Neoplasias Hepáticas/terapia , Inflamación/terapia , Probióticos/farmacología
17.
Ortop Traumatol Rehabil ; 25(3): 131-141, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38078354

RESUMEN

BACKGROUND: The aim of the study was to evaluate total hip arthroplasty in terms of clinical and functional outcomes, rate of complications and hospitalization, as a treatment of choice for displaced femoral neck fractures. MATERIALS AND METHODS: We retrospectively reviewed the data of 526 patients with THA operated on in our department between January 2017 and December 2021. Clinical examinations, functional outcome assessment and radiographic evaluation were performed during follow-up. Patients were evaluated at the following time points: postoperatively at 3 days, 6 weeks, 12 weeks and 1 year, and we recorded surgery related data, complications, Visual Analogue Scale pain score, Harris Hip Score, the Western Ontario McMaster Osteoarthritis Index, and range of motion. RESULTS: Low intraoperative blood loss, short surgical time, short hospitalization, early mobilization of the patient and a good range of motion testify that the modified direct lateral approach is a valuable procedure for the patients with THA. A VAS score evaluated at 3 days and 6 weeks indicated a very good overall postoperative experience. The HHS and Womac scores were evaluated at 6 weeks, 12 weeks and 1 year and showed excellent results. CONCLUSION: THA for active patients with a displaced fracture of the femoral neck is an excellent treatment option which provides lasting pain relief, a high level of function and very low rates of reoperation.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Fracturas del Cuello Femoral , Humanos , Anciano , Artroplastia de Reemplazo de Cadera/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Fracturas del Cuello Femoral/cirugía , Dolor
18.
Antioxidants (Basel) ; 12(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38136229

RESUMEN

Alzheimer's disease (AD) is known as the primary and most common cause of dementia in the middle-aged and elderly population worldwide. Chemical analyses of B. pendula leaf extract (BPE), performed using spectrophotometric and chromatographic methods (LC/MS), revealed high amounts of polyphenol carboxylic acids (gallic, chlorogenic, caffeic, trans-p-coumaric, ferulic, and salicylic acids), as well as flavonoids (apigenin, luteolin, luteolin-7-O-glucoside, naringenin, hyperoside, quercetin, and quercitrin). Four groups of Wistar rats were used in this experiment (n = 7/group): control (untreated), Aß1-42 (2 µg/rat intracerebroventricular (i.c.v.), Aß1-42 + BPE (200 mg/Kg b.w.), and DMSO (10 µL/rat). On the first day, one dose of Aß1-42 was intracerebroventricularly administered to animals in groups 2 and 3. Subsequently, BPE was orally administered for the next 15 days to group 3. On the 16th day, behavioral tests were performed. Biomarkers of brain oxidative stress Malondialdehyde (MDA), (Peroxidase (PRx), Catalase (CAT), and Superoxid dismutase (SOD) and inflammation (cytokines: tumor necrosis factor -α (TNF-α), Interleukin 1ß (IL-1ß), and cyclooxygenase-2 (COX 2)) in plasma and hippocampus homogenates were assessed. Various protein expressions (Phospho-Tau (Ser404) (pTau Ser 404), Phospho-Tau (Ser396) (pTau Ser 396), synaptophysin, and the Nuclear factor kappa B (NFkB) signaling pathway) were analyzed using Western blot and immunohistochemistry in the hippocampus. The results show that BPE diminished lipid peroxidation and neuroinflammation, modulated specific protein expression, enhanced the antioxidant capacity, and improved spontaneous alternation behavior, suggesting that it has beneficial effects in AD.

19.
J Clin Med ; 12(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38137575

RESUMEN

To reduce the incidence of total hip revisions, there have been continuous efforts to enhance prosthetic materials and designs to optimize implant survival. A primary implant with a constrained acetabular component is often used to minimize the risk of dislocations even though this approach has some drawbacks as reported in the literature. To address these concerns, this study aimed to assess the survivorship and dislocation rate of a semi-retentive cemented acetabular cup when used as a primary implant. The specific cemented cup that we studied was not present in any study that we consulted, so to fill this gap, we conducted a retrospective examination of 527 cemented hip prostheses that utilized the semi-retentive cup between the years 2005 and 2012. We employed Cox multiple regression models for our statistical analysis. The revision due to dislocation occurred in 12.8% of all cases, with a lower incidence of 5% (14 cases) in age groups >70 years than in age groups <70 years (14%-32 cases) (p < 0.001). The survival rates of the semi-retentive cemented acetabular cup were 98.6% (520 cases) at 5 years and 92.2% (487 cases) at 10 years. The survival rates were significantly lower in women than men, with 1.9% (7 cases) toward 0% at 5 years and 8.1% (30 cases) toward 5% (7 cases) at 10 years (p = 0.002). The difference in failure rates between age groups over 70 years (2.3%-10 cases) and age groups under 70 years (11.5%-34 cases) was also statistically significant (p < 0.001). Our study indicates that the semi-constrained design may cause frequent damage to the polyethylene liner due to impingement and wear, which are the primary factors for failure. Also, this implant has a similar risk of revision due to dislocation as reported in studies and may be beneficial as a primary implant in elderly patients with low-demanding lifestyles, muscular insufficiency, and low compliance regarding hip prosthetic behavior, without a major effect on survivorship.

20.
J Am Chem Soc ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921430

RESUMEN

Two-dimensional electrically conducting metal-organic frameworks (2D-e-MOFs) have emerged as a class of highly promising functional materials for a wide range of applications. However, despite the significant recent advances in 2D-e-MOFs, developing systems that can be postsynthetically chemically functionalized, while also allowing fine-tuning of the transport properties, remains challenging. Herein, we report two isostructural 2D-e-MOFs: Ni3(HITAT)2 and Ni3(HITBim)2 based on two new 3-fold symmetric ligands: 2,3,7,8,12,13-hexaaminotriazatruxene (HATAT) and 2,3,8,9,14,15-hexaaminotribenzimidazole (HATBim), respectively, with reactive sites for postfunctionalization. Ni3(HITAT)2 and Ni3(HITBim)2 exhibit temperature-activated charge transport, with bulk conductivity values of 44 and 0.5 mS cm-1, respectively. Density functional theory analysis attributes the difference to disparities in the electron density distribution within the parent ligands: nitrogen-rich HATBim exhibits localized electron density and a notably lower lowest unoccupied molecular orbital (LUMO) energy relative to HATAT. Precise amounts of methanesulfonyl groups are covalently bonded to the N-H indole moiety within the Ni3(HITAT)2 framework, modulating the electrical conductivity by a factor of ∼20. These results provide a blueprint for the design of porous functional materials with tunable chemical functionality and electrical response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...