Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Nat Commun ; 15(1): 2328, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38499530

Cornified skin appendages, such as hair and nails, are major evolutionary innovations of terrestrial vertebrates. Human hair and nails consist largely of special intermediate filament proteins, known as hair keratins, which are expressed under the control of the transcription factor Hoxc13. Here, we show that the cornified claws of Xenopus frogs contain homologs of hair keratins and the genes encoding these keratins are flanked by promoters in which binding sites of Hoxc13 are conserved. Furthermore, these keratins and Hoxc13 are co-expressed in the claw-forming epithelium of frog toe tips. Upon deletion of hoxc13, the expression of hair keratin homologs is abolished and the development of cornified claws is abrogated in X. tropicalis. These results indicate that Hoxc13-dependent expression of hair keratin homologs evolved already in stem tetrapods, presumably as a mechanism for protecting toe tips, and that this ancestral genetic program was coopted to the growth of hair in mammals.


Keratins, Hair-Specific , Transcription Factors , Animals , Humans , Transcription Factors/metabolism , Skin/metabolism , Hair/metabolism , Keratins/genetics , Keratins/metabolism , Amphibians , Mammals/metabolism
2.
Leukemia ; 37(12): 2404-2413, 2023 12.
Article En | MEDLINE | ID: mdl-37794102

CRISPR-mediated simultaneous targeting of candidate tumor suppressor genes in Xenopus tropicalis allows fast functional assessment of co-driver genes for various solid tumors. Genotyping of tumors that emerge in the mosaic mutant animals rapidly exposes the gene mutations under positive selection for tumor establishment. However, applying this simple approach to the blood lineage has not been attempted. Multiple hematologic malignancies have mutations in EZH2, encoding the catalytic subunit of the Polycomb Repressive Complex 2. Interestingly, EZH2 can act as an oncogene or a tumor suppressor, depending on cellular context and disease stage. We show here that mosaic CRISPR/Cas9 mediated ezh2 disruption in the blood lineage resulted in early and penetrant acute myeloid leukemia (AML) induction. While animals were co-targeted with an sgRNA that induces notch1 gain-of-function mutations, sequencing of leukemias revealed positive selection towards biallelic ezh2 mutations regardless of notch1 mutational status. Co-targeting dnm2, recurrently mutated in T/ETP-ALL, induced a switch from myeloid towards acute T-cell leukemia. Both myeloid and T-cell leukemias engrafted in immunocompromised hosts. These data underline the potential of Xenopus tropicalis for modeling human leukemia, where mosaic gene disruption, combined with deep amplicon sequencing of the targeted genomic regions, can rapidly and efficiently expose co-operating driver gene mutations.


Leukemia, Myeloid, Acute , RNA, Guide, CRISPR-Cas Systems , Animals , Humans , Histone Methyltransferases/genetics , Xenopus/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Mutation
3.
Cancers (Basel) ; 14(19)2022 Sep 20.
Article En | MEDLINE | ID: mdl-36230482

Modeling human genetic diseases and cancer in lab animals has been greatly aided by the emergence of genetic engineering tools such as TALENs and CRISPR/Cas9. We have previously demonstrated the ease with which genetically engineered Xenopus models (GEXM) can be generated via injection of early embryos with Cas9 recombinant protein loaded with sgRNAs targeting single or multiple tumor suppressor genes. What has been lacking so far is the possibility to propagate and characterize the induced cancers via transplantation. Here, we describe the generation of a rag2 knockout line in Xenopus tropicalis that is deficient in functional T and B cells. This line was validated by means of allografting experiments with primary tp53-/- and apc+/-/tp53-/- donor tumors. In addition, we optimized available protocols for the sub-lethal irradiation of wild-type X. tropicalis froglets. Irradiated animals also allowed the stable, albeit transient, engraftment of transplanted X. tropicalis tumor cells. The novel rag2-/- line and the irradiated wild-type froglets will further expand the experimental toolbox in the diploid amphibian X. tropicalis and help to establish it as a versatile and relevant model for exploring human cancer.

4.
Am J Hum Genet ; 109(11): 2029-2048, 2022 11 03.
Article En | MEDLINE | ID: mdl-36243009

North Carolina macular dystrophy (NCMD) is a rare autosomal-dominant disease affecting macular development. The disease is caused by non-coding single-nucleotide variants (SNVs) in two hotspot regions near PRDM13 and by duplications in two distinct chromosomal loci, overlapping DNase I hypersensitive sites near either PRDM13 or IRX1. To unravel the mechanisms by which these variants cause disease, we first established a genome-wide multi-omics retinal database, RegRet. Integration of UMI-4C profiles we generated on adult human retina then allowed fine-mapping of the interactions of the PRDM13 and IRX1 promoters and the identification of eighteen candidate cis-regulatory elements (cCREs), the activity of which was investigated by luciferase and Xenopus enhancer assays. Next, luciferase assays showed that the non-coding SNVs located in the two hotspot regions of PRDM13 affect cCRE activity, including two NCMD-associated non-coding SNVs that we identified herein. Interestingly, the cCRE containing one of these SNVs was shown to interact with the PRDM13 promoter, demonstrated in vivo activity in Xenopus, and is active at the developmental stage when progenitor cells of the central retina exit mitosis, suggesting that this region is a PRDM13 enhancer. Finally, mining of single-cell transcriptional data of embryonic and adult retina revealed the highest expression of PRDM13 and IRX1 when amacrine cells start to synapse with retinal ganglion cells, supporting the hypothesis that altered PRDM13 or IRX1 expression impairs interactions between these cells during retinogenesis. Overall, this study provides insight into the cis-regulatory mechanisms of NCMD and supports that this condition is a retinal enhanceropathy.


Corneal Dystrophies, Hereditary , Tomography, Optical Coherence , Adult , Animals , Humans , Pedigree , Retina/metabolism , Xenopus laevis/genetics
5.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article En | MEDLINE | ID: mdl-34789568

Cancer precision medicine implies identification of tumor-specific vulnerabilities associated with defined oncogenic pathways. Desmoid tumors are soft-tissue neoplasms strictly driven by Wnt signaling network hyperactivation. Despite this clearly defined genetic etiology and the strict and unique implication of the Wnt/ß-catenin pathway, no specific molecular targets for these tumors have been identified. To address this caveat, we developed fast, efficient, and penetrant genetic Xenopus tropicalis desmoid tumor models to identify and characterize drug targets. We used multiplexed CRISPR/Cas9 genome editing in these models to simultaneously target a tumor suppressor gene (apc) and candidate dependency genes. Our methodology CRISPR/Cas9 selection-mediated identification of dependencies (CRISPR-SID) uses calculated deviations between experimentally observed gene editing outcomes and deep-learning-predicted double-strand break repair patterns to identify genes under negative selection during tumorigenesis. This revealed EZH2 and SUZ12, both encoding polycomb repressive complex 2 components, and the transcription factor CREB3L1 as genetic dependencies for desmoid tumors. In vivo EZH2 inhibition by Tazemetostat induced partial regression of established autochthonous tumors. In vitro models of patient desmoid tumor cells revealed a direct effect of Tazemetostat on Wnt pathway activity. CRISPR-SID represents a potent approach for in vivo mapping of tumor vulnerabilities and drug target identification.


CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/isolation & purification , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Editing/methods , Abdominal Neoplasms/genetics , Adenomatous Polyposis Coli/genetics , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein , Fibromatosis, Aggressive/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nerve Tissue Proteins , Oncogenes , Polycomb Repressive Complex 2/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway , Xenopus , beta Catenin
6.
Sci Rep ; 10(1): 14662, 2020 09 04.
Article En | MEDLINE | ID: mdl-32887910

CRISPR/Cas9 genome editing has revolutionized functional genomics in vertebrates. However, CRISPR/Cas9 edited F0 animals too often demonstrate variable phenotypic penetrance due to the mosaic nature of editing outcomes after double strand break (DSB) repair. Even with high efficiency levels of genome editing, phenotypes may be obscured by proportional presence of in-frame mutations that still produce functional protein. Recently, studies in cell culture systems have shown that the nature of CRISPR/Cas9-mediated mutations can be dependent on local sequence context and can be predicted by computational methods. Here, we demonstrate that similar approaches can be used to forecast CRISPR/Cas9 gene editing outcomes in Xenopus tropicalis, Xenopus laevis, and zebrafish. We show that a publicly available neural network previously trained in mouse embryonic stem cell cultures (InDelphi-mESC) is able to accurately predict CRISPR/Cas9 gene editing outcomes in early vertebrate embryos. Our observations can have direct implications for experiment design, allowing the selection of guide RNAs with predicted repair outcome signatures enriched towards frameshift mutations, allowing maximization of CRISPR/Cas9 phenotype penetrance in the F0 generation.


CRISPR-Cas Systems , Gene Editing/methods , Penetrance , Xenopus laevis/embryology , Xenopus laevis/genetics , Zebrafish/embryology , Zebrafish/genetics , Animals , CRISPR-Associated Protein 9/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Frameshift Mutation , Gene Frequency , HEK293 Cells , Humans , Mice , Mouse Embryonic Stem Cells/metabolism , RNA, Guide, Kinetoplastida/genetics
7.
Oncogene ; 39(13): 2692-2706, 2020 03.
Article En | MEDLINE | ID: mdl-32001819

Alterations of the retinoblastoma and/or the p53 signaling network are associated with specific cancers such as high-grade astrocytoma/glioblastoma, small-cell lung cancer (SCLC), choroid plexus tumors, and small-cell pancreatic neuroendocrine carcinoma (SC-PaNEC). However, the intricate functional redundancy between RB1 and the related pocket proteins RBL1/p107 and RBL2/p130 in suppressing tumorigenesis remains poorly understood. Here we performed lineage-restricted parallel inactivation of rb1 and rbl1 by multiplex CRISPR/Cas9 genome editing in the true diploid Xenopus tropicalis to gain insight into this in vivo redundancy. We show that while rb1 inactivation is sufficient to induce choroid plexus papilloma, combined rb1 and rbl1 inactivation is required and sufficient to drive SC-PaNEC, retinoblastoma and astrocytoma. Further, using a novel Li-Fraumeni syndrome-mimicking tp53 mutant X. tropicalis line, we demonstrate increased malignancy of rb1/rbl1-mutant glioma towards glioblastoma upon concomitant inactivation of tp53. Interestingly, although clinical SC-PaNEC samples are characterized by abnormal p53 expression or localization, in the current experimental models, the tp53 status had little effect on the establishment and growth of SC-PaNEC, but may rather be essential for maintaining chromosomal stability. SCLC was only rarely observed in our experimental setup, indicating requirement of additional or alternative oncogenic insults. In conclusion, we used CRISPR/Cas9 to delineate the tumor suppressor properties of Rbl1, generating new insights in the functional redundancy within the retinoblastoma protein family in suppressing neuroendocrine pancreatic cancer and glioma/glioblastoma.


Carcinoma, Neuroendocrine/pathology , Carcinoma, Small Cell/pathology , Glioblastoma/pathology , Pancreatic Neoplasms/pathology , Retinoblastoma-Like Protein p107/metabolism , Xenopus Proteins/metabolism , Animals , Animals, Genetically Modified , CRISPR-Cas Systems/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Small Cell/genetics , Disease Models, Animal , Gene Editing , Glioblastoma/genetics , Humans , Pancreatic Neoplasms/genetics , Retinoblastoma-Like Protein p107/genetics , Signal Transduction/genetics , Xenopus , Xenopus Proteins/genetics , Pancreatic Neoplasms
8.
Am J Hum Genet ; 105(6): 1294-1301, 2019 12 05.
Article En | MEDLINE | ID: mdl-31761294

The development of hindlimbs in tetrapod species relies specifically on the transcription factor TBX4. In humans, heterozygous loss-of-function TBX4 mutations cause dominant small patella syndrome (SPS) due to haploinsufficiency. Here, we characterize a striking clinical entity in four fetuses with complete posterior amelia with pelvis and pulmonary hypoplasia (PAPPA). Through exome sequencing, we find that PAPPA syndrome is caused by homozygous TBX4 inactivating mutations during embryogenesis in humans. In two consanguineous couples, we uncover distinct germline TBX4 coding mutations, p.Tyr113∗ and p.Tyr127Asn, that segregated with SPS in heterozygous parents and with posterior amelia with pelvis and pulmonary hypoplasia syndrome (PAPPAS) in one available homozygous fetus. A complete absence of TBX4 transcripts in this proband with biallelic p.Tyr113∗ stop-gain mutations revealed nonsense-mediated decay of the endogenous mRNA. CRISPR/Cas9-mediated TBX4 deletion in Xenopus embryos confirmed its restricted role during leg development. We conclude that SPS and PAPPAS are allelic diseases of TBX4 deficiency and that TBX4 is an essential transcription factor for organogenesis of the lungs, pelvis, and hindlimbs in humans.


Abnormalities, Multiple/etiology , Bone Diseases, Developmental/etiology , Ectromelia/etiology , Hip/abnormalities , Homozygote , Ischium/abnormalities , Loss of Function Mutation , Lung Diseases/etiology , Lung/abnormalities , Patella/abnormalities , Pelvis/abnormalities , T-Box Domain Proteins/genetics , Abnormalities, Multiple/pathology , Adolescent , Bone Diseases, Developmental/pathology , Child , Ectromelia/pathology , Female , Hip/pathology , Humans , Ischium/pathology , Lung/pathology , Lung Diseases/pathology , Male , Patella/pathology , Pedigree , Pelvis/pathology , Prognosis
9.
Cell Rep ; 28(13): 3338-3352.e6, 2019 09 24.
Article En | MEDLINE | ID: mdl-31553905

Mucociliary epithelia provide a first line of defense against pathogens. Impaired regeneration and remodeling of mucociliary epithelia are associated with dysregulated Wnt/ß-catenin signaling in chronic airway diseases, but underlying mechanisms remain elusive, and studies yield seemingly contradicting results. Employing the Xenopus mucociliary epidermis, the mouse airway, and human airway Basal cells, we characterize the evolutionarily conserved roles of Wnt/ß-catenin signaling in vertebrates. In multiciliated cells, Wnt is required for cilia formation during differentiation. In Basal cells, Wnt prevents specification of epithelial cell types by activating ΔN-TP63, a master transcription factor, which is necessary and sufficient to mediate the Wnt-induced inhibition of specification and is required to retain Basal cells during development. Chronic Wnt activation leads to remodeling and Basal cell hyperplasia, which are reversible in vivo and in vitro, suggesting Wnt inhibition as a treatment option in chronic lung diseases. Our work provides important insights into mucociliary signaling, development, and disease.


Epithelium/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway/immunology , beta Catenin/metabolism , Animals , Cell Differentiation , Humans , Mice
10.
Sci Rep ; 9(1): 11191, 2019 08 01.
Article En | MEDLINE | ID: mdl-31371771

During vertebrate embryogenesis, the cranial neural crest (CNC) forms at the neural plate border and subsequently migrates and differentiates into many types of cells. The transcription factor Snai2, which is induced by canonical Wnt signaling to be expressed in the early CNC, is pivotal for CNC induction and migration in Xenopus. However, snai2 expression is silenced during CNC migration, and its roles at later developmental stages remain unclear. We generated a transgenic X. tropicalis line that expresses enhanced green fluorescent protein (eGFP) driven by the snai2 promoter/enhancer, and observed eGFP expression not only in the pre-migratory and migrating CNC, but also the differentiating CNC. This transgenic line can be used directly to detect deficiencies in CNC development at various stages, including subtle perturbation of CNC differentiation. In situ hybridization and immunohistochemistry confirm that Snai2 is re-expressed in the differentiating CNC. Using a separate transgenic Wnt reporter line, we show that canonical Wnt signaling is also active in the differentiating CNC. Blocking Wnt signaling shortly after CNC migration causes reduced snai2 expression and impaired differentiation of CNC-derived head cartilage structures. These results suggest that Wnt signaling is required for snai2 re-expression and CNC differentiation.


Brain/embryology , Neural Crest/physiology , Transcription Factors/metabolism , Wnt Proteins/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology , ADAM Proteins/genetics , ADAM Proteins/metabolism , Animals , Animals, Genetically Modified , Cell Differentiation/drug effects , Cell Differentiation/genetics , Embryo, Nonmammalian , Embryonic Development/drug effects , Embryonic Development/physiology , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Gene Knockdown Techniques , Genes, Reporter/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Heterocyclic Compounds, 3-Ring/pharmacology , Imides/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neural Crest/cytology , Quinolines/pharmacology , Wnt Proteins/antagonists & inhibitors , Wnt Proteins/genetics , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology , Xenopus Proteins/genetics , Xenopus laevis/genetics
11.
Front Physiol ; 10: 210, 2019.
Article En | MEDLINE | ID: mdl-30930786

[This corrects the article DOI: 10.3389/fphys.2019.00048.].

12.
Front Physiol ; 10: 48, 2019.
Article En | MEDLINE | ID: mdl-30774603

Aquatic vertebrate organisms such as zebrafish have been used for over a decade to model different types of human cancer, including hematologic malignancies. However, the introduction of gene editing techniques such as CRISPR/Cas9 and TALEN, have now opened the road for other organisms featuring large externally developing embryos that are easily accessible. Thanks to its unique diploid genome that shows a high degree of synteny to the human, combined with its relatively short live cycle, Xenopus tropicalis has now emerged as an additional powerful aquatic model for studying human disease genes. Genome editing techniques are very simple and extremely efficient, permitting the fast and cheap generation of genetic models for human disease. Mosaic disruption of tumor suppressor genes allows the generation of highly penetrant and low latency cancer models. While models for solid human tumors have been recently generated, genetic models for hematologic malignancies are currently lacking for Xenopus. Here we describe our experimental pipeline, based on mosaic genome editing by CRISPR/Cas9, to generate innovative and high-performing leukemia models in X. tropicalis. These add to the existing models in zebrafish and will extend the experimental platform available in aquatic vertebrate organisms to contribute to the field of hematologic malignancies. This will extend our knowledge in the etiology of this cancer and assist the identification of molecular targets for therapeutic intervention.

13.
Drug Discov Today Technol ; 28: 41-52, 2018 Aug.
Article En | MEDLINE | ID: mdl-30205880

The speed by which clinical genomics is currently identifying novel potentially pathogenic variants is outperforming the speed by which these can be functionally (genotype-phenotype) annotated in animal disease models. However, over the past few years the emergence of CRISPR/Cas9 as a straight-forward genome editing technology has revolutionized disease modeling in vertebrate non-mammalian model organisms such as zebrafish, medaka and Xenopus. It is now finally possible, by CRISPR/Cas9, to rapidly establish clinically relevant disease models in these organisms. Interestingly, these can provide both cost-effective genotype-phenotype correlations for gene-(variants) and genomic rearrangements obtained from clinical practice, as well as be exploited to perform translational research to improve prospects of disease afflicted patients. In this review, we show an extensive overview of these new CRISPR/Cas9-mediated disease models and provide future prospects that will allow increasingly accurate modeling of human disease in zebrafish, medaka and Xenopus.


CRISPR-Cas Systems , Disease Models, Animal , Gene Editing , Animals , Gene Targeting , Genetic Therapy/methods , Genomics , Mutation , Xenopus , Zebrafish
14.
Methods Mol Biol ; 1865: 33-54, 2018.
Article En | MEDLINE | ID: mdl-30151757

In this chapter, we convey a state-of-the art update to the 2014 Nakayama protocol for CRISPR/Cas9 genome engineering in Xenopus tropicalis (X. tropicalis). We discuss in depth, gRNA design software and rules, gRNA synthesis, and procedures for tissue- and tissue-specific CRISPR/Cas9 genome editing by targeted microinjection in X. tropicalis embryos. We demonstrate the methodology by which any standard equipped Xenopus researcher with microinjection experience can generate F0 CRISPR/Cas9 mediated mosaic mutants (crispants) within one to two work-week(s). The described methodology allows CRISPR/Cas9 efficiencies to be high enough to read out phenotypic consequences, and thus perform gene function analysis, in the F0 crispant. Additionally, we provide the framework for performing multiplex tissue-specific CRISPR/Cas9 experiments generating crispants mosaic mutant in up to four genes simultaneously, which can be of importance for Laevis researchers aiming to target by CRISPR/Cas9 both the S and L homeolog of a gene simultaneously. Finally, we discuss off-target concerns, how to minimize these and ways to rapidly bypass reviewer off-target critique by exploiting the advantages of X. tropicalis.


CRISPR-Cas Systems/genetics , Genetic Engineering/methods , Genome , Organ Specificity/genetics , Xenopus/genetics , Animals , CRISPR-Associated Protein 9/metabolism , Gene Editing , Microinjections , Monophenol Monooxygenase/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Xenopus/embryology
15.
Methods Mol Biol ; 1865: 55-65, 2018.
Article En | MEDLINE | ID: mdl-30151758

Targeted genome engineering technologies are revolutionizing the field of functional genomics and have been extensively used in a variety of model organisms, including X. tropicalis and X. laevis. The original methods based on Zn-finger proteins coupled to endonuclease domains were initially replaced by the more efficient and straightforward transcription activator-like effector nucleases (TALENs), adapted from plant pathogenic Xanthomonas species. Although functional genomics are more recently dominated by the even faster and more convenient CRISPR/Cas9 technology, the use of TALENs may still be preferred in a number of cases. We have successfully implemented this technology in Xenopus and in this chapter we describe our working protocol for targeted genome editing in X. tropicalis using TALENs.


Genetic Engineering/methods , Genome , Transcription Activator-Like Effector Nucleases/metabolism , Xenopus/genetics , Animals , Base Sequence , Microinjections , RNA, Messenger/biosynthesis
16.
Methods Mol Biol ; 1865: 67-82, 2018.
Article En | MEDLINE | ID: mdl-30151759

The targeted nuclease revolution (ZFN, TALEN, and CRISPR/Cas9) has led to a myriad of reports describing genotyping methodologies for genome edited founders (F0-crispants) and their offspring (F1). As such, choosing a specific genotyping methodology for your Xenopus CRISPR/Cas9 experiments can be challenging. In this chapter we will discuss, with emphasis on Xenopus tropicalis (X. tropicalis), different methods for assessing genome editing efficiencies within F0 CRISPR/Cas9 founders and for identification of their hetero-, compound hetero-, and homozygous mutant F1 offspring. For F0 crispants, we will provide the protocols and the respective (dis)advantages of genotyping with heteroduplex mobility assay (HMA), subclone Sanger sequencing, and sequence trace decomposition. Furthermore, we provide a previously unpublished pipe-line for rapid genotyping of F1 offspring-high resolution melting analysis (HRMA) and sequence trace decomposition-procured from breeding with F0 crispants. As such, we report here the current state-of-the-art cost- and time-effective approaches to perform genotyping of CRISPR/Cas9 experiments for the Xenopus tropicalis researcher.


CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Editing , Genotyping Techniques/methods , Xenopus/genetics , Animals , Breeding , Embryo, Nonmammalian/metabolism , Homozygote , Mutation/genetics , Nucleic Acid Denaturation
17.
Methods Mol Biol ; 1865: 147-161, 2018.
Article En | MEDLINE | ID: mdl-30151765

The recent advent of CRISPR/Cas9 as a straightforward genome editing tool has allowed the establishment of the first bona fide genetic cancer models within the diploid aquatic model organism Xenopus tropicalis (X. tropicalis). Within this chapter, we demonstrate the methods for targeting tumor suppressors with the CRISPR/Cas9 system in the developing X. tropicalis embryo. We further illustrate genotyping and phenotyping of the resulting tumor-bearing F0 mosaic mutant animals (crispants). We focus in detail on the histopathological analysis of cancer neoplasms, the methodology to illustrate high proliferative index by proliferation marker immunofluorescence and how to isolate specific (tumor) cell populations by laser capture microdissection. As such, the described pipeline allows for rapid establishment of novel cancer models by CRISPR/Cas9 targeting of established tumor suppressor genes, or novel candidates obtained from clinical data. In conclusion, we thus provide the methodology for modeling human cancer with the highly efficient CRISPR/Cas9 system in F0 X. tropicalis.


CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Knockout Techniques/methods , Genes, Tumor Suppressor , Neoplasms/genetics , Animals , Cell Proliferation , Disease Models, Animal , Gene Editing , Laser Capture Microdissection , Mutation/genetics , Neoplasms/pathology , Phenotype , Proliferating Cell Nuclear Antigen/metabolism , RNA, Guide, Kinetoplastida/metabolism , Xenopus/genetics
18.
Methods Mol Biol ; 1865: 243-250, 2018.
Article En | MEDLINE | ID: mdl-30151771

Many developmental signals are associated with changes in proliferative response. Also, growing organs and tissues can contain different cellular subpopulations with a defined status in the cell cycle, e.g., quiescent in stem cells, high proliferation in progenitors, cell cycle exit in differentiating cells. This chapter describes a method for isolation of individual cell populations from the Xenopus tadpole brain and determination of their cell cycle status using flow cytometry.


Brain/embryology , Cell Cycle , Embryo, Nonmammalian/cytology , Flow Cytometry/methods , Genes, Reporter , Xenopus/embryology , Animals , DNA/metabolism , Dissection , Fluorescence , Permeability , Staining and Labeling , Tissue Fixation
19.
Nature ; 561(7722): E7, 2018 09.
Article En | MEDLINE | ID: mdl-29977062

In this Letter, the surname of author Lena Vlaminck was misspelled 'Vlaeminck'. In addition, author Kris Vleminckx should have been associated with affiliation 16 (Center for Medical Genetics, Ghent University, Ghent, Belgium). These have been corrected online.

20.
Nature ; 557(7706): 564-569, 2018 05.
Article En | MEDLINE | ID: mdl-29769720

The four R-spondin secreted ligands (RSPO1-RSPO4) act via their cognate LGR4, LGR5 and LGR6 receptors to amplify WNT signalling1-3. Here we report an allelic series of recessive RSPO2 mutations in humans that cause tetra-amelia syndrome, which is characterized by lung aplasia and a total absence of the four limbs. Functional studies revealed impaired binding to the LGR4/5/6 receptors and the RNF43 and ZNRF3 transmembrane ligases, and reduced WNT potentiation, which correlated with allele severity. Unexpectedly, however, the triple and ubiquitous knockout of Lgr4, Lgr5 and Lgr6 in mice did not recapitulate the known Rspo2 or Rspo3 loss-of-function phenotypes. Moreover, endogenous depletion or addition of exogenous RSPO2 or RSPO3 in triple-knockout Lgr4/5/6 cells could still affect WNT responsiveness. Instead, we found that the concurrent deletion of rnf43 and znrf3 in Xenopus embryos was sufficient to trigger the outgrowth of supernumerary limbs. Our results establish that RSPO2, without the LGR4/5/6 receptors, serves as a direct antagonistic ligand to RNF43 and ZNRF3, which together constitute a master switch that governs limb specification. These findings have direct implications for regenerative medicine and WNT-associated cancers.


DNA-Binding Proteins/antagonists & inhibitors , Extremities/embryology , Intercellular Signaling Peptides and Proteins/metabolism , Limb Deformities, Congenital/genetics , Receptors, G-Protein-Coupled/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Animals , DNA-Binding Proteins/metabolism , Female , Fibroblasts , Gene Knockout Techniques , HEK293 Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Oncogene Proteins/antagonists & inhibitors , Oncogene Proteins/metabolism , Phenotype , Receptors, G-Protein-Coupled/deficiency , Ubiquitin-Protein Ligases/metabolism , Xenopus/genetics
...