Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Lab Anim ; 56(2): 147-156, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34392713

RESUMEN

Preclinical drug studies routinely administer experimental compounds to animal models with the goal of minimizing potential adverse events from the procedure. In this study, we assessed the ability to train adult male Long Evans rats to accept daily voluntarily syringe feedings of l-3,4-dihydroxyphenylalanine (L-DOPA) compared to intraperitoneal (IP) injections. Rats were trained to become familiar with the syringe and then fed a training solution that did not contain the experimental compound. If the rat was compliant during the training phase, the dilution of training solution was continuously decreased and replaced with the experimental solution. Voluntary oral dosing compliance was recorded and quantified throughout the study. To assess drug activity within the drug-targeted tissues, the striatum and retina were collected and analyzed for L-DOPA, dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels by high performance liquid chromatography (HPLC). Drug delivery efficiency by oral dosing was directly compared to IP injection by collecting plasma and analyzing L-DOPA levels with HPLC. Adult male rats had high compliance for voluntary oral dosing. HPLC showed that oral administration of the compound at the same dose as IP injection yielded significantly lower plasma levels, and that higher oral L-DOPA doses yield higher plasma L-DOPA content. This study describes detailed methodology to train adult rats to syringe feed experimental compounds and provides important preclinical research on drug dosing and drug delivery to the striatum and retina.


Asunto(s)
Dopamina , Levodopa , Ácido 3,4-Dihidroxifenilacético/análisis , Animales , Cuerpo Estriado/química , Dopamina/análisis , Levodopa/análisis , Masculino , Ratas , Ratas Long-Evans
3.
Transl Vis Sci Technol ; 10(4): 8, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34003986

RESUMEN

Purpose: L-DOPA treatment initiated at the start of hyperglycemia preserves retinal and visual function in diabetic rats. Here, we investigated a more clinically relevant treatment strategy in which retinal and visual dysfunction designated the beginning of the therapeutic window for L-DOPA treatment. Methods: Spatial frequency thresholds using optomotor response and oscillatory potential (OP) delays using electroretinograms were compared at baseline, 3, 6, and 10 weeks after streptozotocin (STZ) between diabetic and control rats. L-DOPA/carbidopa treatment (DOPA) or vehicle was delivered orally 5 days per week beginning at 3 weeks after STZ, when significant retinal and visual deficits were measured. At 10 weeks after STZ, retinas were collected to measure L-DOPA, dopamine, and 3,4-dihydroxyphenylacetic acid (DOPAC) levels using high-performance liquid chromatography. Results: Spatial frequency thresholds decreased at 6 weeks in diabetic vehicle rats (28%), whereas diabetic DOPA rats had stable thresholds (<1%) that maintained to 10 weeks, creating significantly higher thresholds compared with diabetic vehicle rats (P < 0.0001). OP2 implicit times in response to dim, rod-driven stimuli were decreased in diabetic compared with control rats (3 weeks, P < 0.0001; 10 weeks, P < 0.01). With L-DOPA treatment, OP2 implicit times recovered in diabetic rats to be indistinguishable from control rats by 10 weeks after STZ. Rats treated with L-DOPA showed significantly increased retinal L-DOPA (P < 0.001) and dopamine levels (P < 0.05). Conclusions: L-DOPA treatment started after the detection of retinal and visual dysfunction showed protective effects in diabetic rats. Translational Relevance: Early retinal functional deficits induced by diabetes can be used to identify an earlier therapeutic window for L-DOPA treatment which protects from further vision loss and restores retinal function.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Animales , Diabetes Mellitus Experimental/complicaciones , Retinopatía Diabética/tratamiento farmacológico , Electrorretinografía , Levodopa , Neuroprotección , Ratas
4.
Exp Eye Res ; 202: 108333, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129829

RESUMEN

Glaucoma is the leading cause of irreversible blindness worldwide, and women represent roughly 60% of the affected population. Early menopause and estrogen signaling defects are risk factors for glaucoma. Recently, we found that surgical menopause exacerbated visual dysfunction in an ocular hypertension model of glaucoma. Here, we investigated if surgical menopause exacerbated visual dysfunction in a model of direct retinal ganglion cell (RGC) damage via optic nerve crush (ONC). Female Long Evans rats (n = 12) underwent ovariectomy (OVX) to induce surgical menopause or Sham surgery. Eight weeks post-surgery, baseline visual function was assessed via optomotor response. Afterwards, rats underwent monocular ONC. Visual function was assessed at 4, 8, and 12 weeks post-ONC. At 12 weeks, retinal function via electroretinography and retinal nerve fiber layer (RNFL) thickness via optical coherence tomography were measured. Visual acuity was reduced after ONC (p < 0.001), with surgical menopausal animals having 31.7% lower visual acuity than Sham animals at 12 weeks (p = 0.01). RNFL thinning (p < 0.0001) and decreased RGC function (p = 0.0016) occurred at 12 weeks in ONC groups. Surgical menopause worsens visual acuity after direct RGC damage using an ONC model. This demonstrates that surgical menopause plays a role in visual function after injury.


Asunto(s)
Fibras Nerviosas/fisiología , Traumatismos del Nervio Óptico/fisiopatología , Ovariectomía , Retina/fisiopatología , Células Ganglionares de la Retina/fisiología , Trastornos de la Visión/fisiopatología , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Compresión Nerviosa , Ratas , Ratas Long-Evans , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología
5.
Transl Vis Sci Technol ; 9(10): 8, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32974080

RESUMEN

Purpose: Genipin has been proposed as a possible neuroprotective therapy in myopia and glaucoma. Here, we aim to determine the effects of prolonged genipin-induced scleral stiffening on visual function. Methods: Eyes from Brown Norway rats were treated in vivo with either a single 15 mM genipin retrobulbar injection or sham retrobulbar injection and were compared to naïve eyes. Intraocular pressure, optomotor response, and electroretinograms were repeatedly measured over 4 weeks following retrobulbar injections to determine visual and retinal function. At 4 weeks, we quantified retinal ganglion cell axon counts. Finally, molecular changes in gene and protein expression were analyzed via real-time polymerase chain reaction (RT-PCR) and proteomics. Results: Retrobulbar injection of genipin did not affect intraocular pressure (IOP) or retinal function, nor have a sustained impact on visual function. Although genipin-treated eyes had a small decrease in retinal ganglion cell axon counts compared to contralateral sham-treated eyes (-8,558 ± 18,646; mean ± SD), this was not statistically significant (P = 0.206, n = 9). Last, we did not observe any changes in gene or protein expression due to genipin treatment. Conclusions: Posterior scleral stiffening with a single retrobulbar injection of 15 mM genipin causes no sustained deficits in visual or retinal function or at the molecular level in the retina and sclera. Retinal ganglion cell axon morphology appeared normal. Translational Significance: These results support future in vivo studies to determine the efficacy of genipin-induced posterior scleral stiffening to help treat ocular diseases, like myopia and glaucoma.


Asunto(s)
Glaucoma , Esclerótica , Animales , Iridoides/farmacología , Ratas , Retina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA