Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 721: 150119, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768545

RESUMEN

Mitochondrial dynamics were examined in human dermal fibroblasts biopsied from a confirmed Leber's Hereditary Optic Neuropathy (LHON) patient with a homoplasmic G11778A mutation of the mitochondrial genome. Expression of the G11778A mutation did not impart any discernible difference in mitochondrial network morphology using widefield fluorescence microscopy. However, at the ultrastructural level, cells expressing this mutation exhibited an impairment of mitochondrial morphological plasticity when forced to utilize oxidative phosphorylation (OXPHOS) by transition to glucose-free, galactose-containing media. LHON fibroblasts also displayed a transient increase in mitophagy upon transition to galactose media. These results provide new insights into the consequences of the G11778A mutation of LHON and the pathological mechanisms underlying this disease.


Asunto(s)
Fibroblastos , Mitocondrias , Mitofagia , Mutación , Atrofia Óptica Hereditaria de Leber , Humanos , Mitofagia/genética , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/patología , Atrofia Óptica Hereditaria de Leber/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fosforilación Oxidativa , Células Cultivadas
2.
Anat Rec (Hoboken) ; 306(5): 947-959, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35719006

RESUMEN

Abandoned harbor seal pups (Phoca vitulina) are frequently recovered by rehabilitation centers and often require intensive nursing, gavage feeding and swallowing rehabilitation prior to anticipated release. Seal upper aerodigestive tract (UAT) histology descriptions relevant to deglutition are limited, impacting advances in rehabilitation practice. Therefore, we examined the histological characteristics of the harbor seal UAT to understand species-specific functional anatomy and characterize adaptations. To this end, we conducted gross dissections, compiled measurements and reviewed histologic features of the UAT structures of 14 preweaned harbor seal pups that died due to natural causes or were humanely euthanized. Representative samples for histologic evaluation included the tongue, salivary glands, epiglottis, and varying levels of the trachea and esophagus. Histologically, there was a prominent muscularis in the tongue with fewer lingual papillae types compared to humans. Abundant submucosal glands were observed in lateral and pharyngeal parts of the tongue and rostral parts of the esophagus. When compared to other mammalian species, there was a disproportionate increase in the amount of striated muscle throughout the length of the esophageal muscularis externa. This may indicate a lesser degree of autonomic control over the esophageal phase of swallowing in harbor seals. Our study represents the first detailed UAT histological descriptions for neonatal harbor seals. Collectively, these findings support specific anatomic and biomechanical adaptations relevant to suckling, prehension, and deglutition. This work will inform rehabilitation practices and guide future studies on swallowing physiology in harbor seals with potential applications to other pinniped and otariid species in rehabilitation settings.


Asunto(s)
Medicina , Phoca , Animales , Humanos , Recién Nacido , Phoca/fisiología , Deglución
3.
Curr Biol ; 32(4): 898-903.e1, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35063119

RESUMEN

Separation of respiratory and digestive tracts in the mammalian pharynx is critical for survival. Food must be kept out of the respiratory tract, and air must be directed into the respiratory tract when breathing.1 Cetaceans have the additional problem of feeding while underwater. Lunge-feeding baleen whales (rorquals) open the mouth while swimming at high speeds to engulf a volume of prey-laden water as large as their own body2 and experience tremendous forces as water floods the mouth. How the respiratory tract is protected in the pharynx during engulfment and while swallowing a massive slurry of tiny living prey remains unknown, despite its importance to survival. By dissecting adult and fetal fin whales, we determined that a large musculo-fatty structure passively seals the oropharyngeal channel. This "oral plug" is not observed in other animals, and its position indicates it must be shifted to allow swallowing; it is a part of the soft palate and can only shift posteriorly and dorsally. Elevation of the oral plug allows food transfer to the pharynx and protects the upper airways from food entry. The laryngeal inlet in the floor of the pharynx is sealed by laryngeal cartilages, and the muscular laryngeal sac moves upward into the laryngeal cavity, completely occluding the airway. The pharynx is dedicated to the digestive tract during swallowing, with no connection between upper and lower airways. These adaptations to facilitate swallowing were a critical development in the evolution of large body size in these, the largest animals on earth.


Asunto(s)
Ballena de Aleta , Laringe , Animales , Boca , Tráquea , Agua
4.
mBio ; 12(6): e0293921, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34781738

RESUMEN

Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.


Asunto(s)
Actinas/metabolismo , Membrana Celular/microbiología , Forminas/metabolismo , Listeria monocytogenes/fisiología , Listeriosis/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiología , Caveolina 1/genética , Caveolina 1/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Filaminas/genética , Filaminas/metabolismo , Forminas/genética , Células HeLa , Humanos , Listeria monocytogenes/genética , Listeriosis/genética , Listeriosis/microbiología
5.
Biol Reprod ; 105(5): 1330-1343, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426822

RESUMEN

Here we explore the prediction that long-term knockdown of cortactin (CTTN), a component of tubulobulbar complexes (TBCs), disrupts TBCs in Sertoli cells and alters the turnover of basal ectoplasmic specializations (ESs). In rats, intratesticular injections of siRNA targeting CTTN (siCTTN) in one testis and nontargeting siRNA (siControl) in the contralateral testis were done on days 0, 2, 4, 6, and 8. The experiment was terminated on day 9 and testes were analyzed by either western blotting, or by stimulated emission depletion (STED), electron and/or conventional fluorescence microscopy. Levels of CTTN were successfully knocked down in experimental testes compared to controls. When cryo-sections were labeled for actin filaments, or CTTN, and oxysterol binding protein-related protein 9 (ORP9) and analyzed by STED microscopy, TBCs were "less distinct" than in tubules of the same stages from control testes. When analyzed by electron microscopy, redundant clumps of basal actin filament containing ESs were observed in experimental sections. Using labeling of actin filaments in ESs, thresholding techniques were used to calculate the number of pixels above threshold per unit length of tubule wall in seminiferous tubules at Stage VII. Median values were higher in experimental testes relative to controls in the four animals analyzed. Although we detected subtle differences in ES turnover, we were unable to demonstrate changes in spermatocyte translocation or in the levels of junction proteins at the sites. Our results are the first to demonstrate that perturbation of basal TBCs alters the turnover of actin-related junctions (ESs).


Asunto(s)
Cortactina/deficiencia , Uniones Intercelulares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Células de Sertoli/metabolismo , Testículo/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Masculino , Ratas
6.
Sci Rep ; 10(1): 20937, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262363

RESUMEN

The endoplasmic reticulum (ER) is a complex subcellular organelle composed of diverse structures such as tubules, sheets and tubular matrices. Flaviviruses such as Zika virus (ZIKV) induce reorganization of ER membranes to facilitate viral replication. Here, using 3D super resolution microscopy, ZIKV infection is shown to induce the formation of dense tubular matrices associated with viral replication in the central ER. Viral non-structural proteins NS4B and NS2B associate with replication complexes within the ZIKV-induced tubular matrix and exhibit distinct ER distributions outside this central ER region. Deep neural networks trained to distinguish ZIKV-infected versus mock-infected cells successfully identified ZIKV-induced central ER tubular matrices as a determinant of viral infection. Super resolution microscopy and deep learning are therefore able to identify and localize morphological features of the ER and allow for better understanding of how ER morphology changes due to viral infection.


Asunto(s)
Aprendizaje Profundo , Retículo Endoplásmico/metabolismo , Microscopía/métodos , Virus Zika/fisiología , Encéfalo/patología , Encéfalo/virología , Línea Celular Tumoral , Retículo Endoplásmico/ultraestructura , Matriz Extracelular/metabolismo , Humanos , Organoides/metabolismo , Organoides/ultraestructura , Organoides/virología , ARN Bicatenario/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virus Zika/ultraestructura , Infección por el Virus Zika/virología
7.
Front Vet Sci ; 7: 429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32851016

RESUMEN

Prestin is an integral membrane motor protein located in outer hair cells of the mammalian cochlea. It is responsible for electromotility and required for cochlear amplification. Although prestin works in a cycle-by-cycle mode up to frequencies of at least 79 kHz, it is not known whether or not prestin is required for the extreme high frequencies used by echolocating species. Cetaceans are known to possess a prestin coding gene. However, the expression and distribution pattern of the protein in the cetacean cochlea has not been determined, and the contribution of prestin to echolocation has not yet been resolved. Here we report the expression of the protein prestin in five species of echolocating whales and two species of echolocating bats. Positive labeling in the basolateral membrane of outer hair cells, using three anti-prestin antibodies, was found all along the cochlear spiral in echolocating species. These findings provide morphological evidence that prestin can have a role in cochlear amplification in the basolateral membrane up to 120-180 kHz. In addition, labeling of the cochlea with a combination of anti-prestin, anti-neurofilament, anti-myosin VI and/or phalloidin and DAPI will be useful for detecting potential recent cases of noise-induced hearing loss in stranded cetaceans. This study improves our understanding of the mechanisms involved in sound transduction in echolocating mammals, as well as describing an optimized methodology for detecting cases of hearing loss in stranded marine mammals.

8.
mBio ; 11(1)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964732

RESUMEN

Listeria monocytogenes moves from one cell to another using actin-rich membrane protrusions that propel the bacterium toward neighboring cells. Despite cholesterol being required for this transfer process, the precise host internalization mechanism remains elusive. Here, we show that caveolin endocytosis is key to this event as bacterial cell-to-cell transfer is severely impaired when cells are depleted of caveolin-1. Only a subset of additional caveolar components (cavin-2 and EHD2) are present at sites of bacterial transfer, and although clathrin and the clathrin-associated proteins Eps15 and AP2 are absent from the bacterial invaginations, efficient L. monocytogenes spreading requires the clathrin-interacting protein epsin-1. We also directly demonstrated that isolated L. monocytogenes membrane protrusions can trigger the recruitment of caveolar proteins in a neighboring cell. The engulfment of these bacterial and cytoskeletal structures through a caveolin-based mechanism demonstrates that the classical nanometer-scale theoretical size limit for this internalization pathway is exceeded by these bacterial pathogens.IMPORTANCEListeria monocytogenes moves from one cell to another as it disseminates within tissues. This bacterial transfer process depends on the host actin cytoskeleton as the bacterium forms motile actin-rich membranous protrusions that propel the bacteria into neighboring cells, thus forming corresponding membrane invaginations. Here, we examine these membrane invaginations and demonstrate that caveolin-1-based endocytosis is crucial for efficient bacterial cell-to-cell spreading. We show that only a subset of caveolin-associated proteins (cavin-2 and EHD2) are involved in this process. Despite the absence of clathrin at the invaginations, the classical clathrin-associated protein epsin-1 is also required for efficient bacterial spreading. Using isolated L. monocytogenes protrusions added onto naive host cells, we demonstrate that actin-based propulsion is dispensable for caveolin-1 endocytosis as the presence of the protrusion/invagination interaction alone triggers caveolin-1 recruitment in the recipient cells. Finally, we provide a model of how this caveolin-1-based internalization event can exceed the theoretical size limit for this endocytic pathway.


Asunto(s)
Caveolina 1/metabolismo , Interacciones Huésped-Patógeno , Listeria monocytogenes/fisiología , Listeriosis/metabolismo , Listeriosis/microbiología , Animales , Biomarcadores , Línea Celular , Técnica del Anticuerpo Fluorescente , Humanos
9.
J Exp Biol ; 223(Pt 4)2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31974219

RESUMEN

The upper respiratory tract of rorquals, lunge-feeding baleen whales, must be protected against water incursion and the risk of barotrauma at depth, where air-filled spaces like the bony nasal cavities may experience high adverse pressure gradients. We hypothesize these two disparate tasks are accomplished by paired cylindrical nasal plugs that attach on the rostrum and deep inside the nasal cavity. Here, we present evidence that the large size and deep attachment of the plugs is a compromise, allowing them to block the nasal cavities to prevent water entry while also facilitating pressure equilibration between the nasal cavities and ambient hydrostatic pressure (Pamb) at depth. We investigated nasal plug behaviour using videos of rorquals surfacing, plug morphology from dissections, histology and MRI scans, and plug function by mathematically modelling nasal pressures at depth. We found each nasal plug has three structurally distinct regions: a muscular rostral region, a predominantly fatty mid-section and an elastic tendon that attaches the plug caudally. We propose muscle contraction while surfacing pulls the fatty sections rostrally, opening the nasal cavities to air, while the elastic tendons snap the plugs back into place, sealing the cavities after breathing. At depth, we propose Pamb pushes the fatty region deeper into the nasal cavities, decreasing air volume by about half and equilibrating nasal cavity to Pamb, preventing barotrauma. The nasal plugs are a unique innovation in rorquals, which demonstrate their importance and novelty during diving, where pressure becomes as important an issue as the danger of water entry.


Asunto(s)
Buceo/fisiología , Cavidad Nasal/anatomía & histología , Ballenas/anatomía & histología , Animales , Barotrauma , Cavidad Nasal/fisiología , Ballenas/fisiología
10.
Proc Natl Acad Sci U S A ; 116(10): 4518-4527, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30787191

RESUMEN

Podocalyxin (Podxl) is broadly expressed on the luminal face of most blood vessels in adult vertebrates, yet its function on these cells is poorly defined. In the present study, we identified specific functions for Podxl in maintaining endothelial barrier function. Using electrical cell substrate impedance sensing and live imaging, we found that, in the absence of Podxl, human umbilical vein endothelial cells fail to form an efficient barrier when plated on several extracellular matrix substrates. In addition, these monolayers lack adherens junctions and focal adhesions and display a disorganized cortical actin cytoskeleton. Thus, Podxl has a key role in promoting the appropriate endothelial morphogenesis required to form functional barriers. This conclusion is further supported by analyses of mutant mice in which we conditionally deleted a floxed allele of Podxl in vascular endothelial cells (vECs) using Tie2Cre mice (PodxlΔTie2Cre). Although we did not detect substantially altered permeability in naïve mice, systemic priming with lipopolysaccharide (LPS) selectively disrupted the blood-brain barrier (BBB) in PodxlΔTie2Cre mice. To study the potential consequence of this BBB breach, we used a selective agonist (TFLLR-NH2) of the protease-activated receptor-1 (PAR-1), a thrombin receptor expressed by vECs, neuronal cells, and glial cells. In response to systemic administration of TFLLR-NH2, LPS-primed PodxlΔTie2Cre mice become completely immobilized for a 5-min period, coinciding with severely dampened neuroelectric activity. We conclude that Podxl expression by CNS tissue vECs is essential for BBB maintenance under inflammatory conditions.


Asunto(s)
Barrera Hematoencefálica , Inflamación/metabolismo , Sialoglicoproteínas/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Morfogénesis
11.
J Infect Dis ; 219(1): 145-153, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29733369

RESUMEN

Background: Listeria generate actin-rich tubular protrusions at the plasma membrane that propel the bacteria into neighboring cells. The precise molecular mechanisms governing the formation of these protrusions remain poorly defined. Methods: In this study, we demonstrate that the prolyl cis-trans isomerase (PPIase) cyclophilin A (CypA) is hijacked by Listeria at membrane protrusions used for cell-to-cell spreading. Results: Cyclophilin A localizes within the F-actin of these structures and is crucial for their proper formation, as cells depleted of CypA have extended actin-rich structures that are misshaped and are collapsed due to changes within the F-actin network. The lack of structural integrity within the Listeria membrane protrusions hampers the microbes from spreading from CypA null cells. Conclusions: Our results demonstrate a crucial role for CypA during Listeria infections.


Asunto(s)
Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/microbiología , Ciclofilina A/metabolismo , Listeria/metabolismo , Listeriosis/metabolismo , Células A549 , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actinas/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/microbiología , Extensiones de la Superficie Celular/ultraestructura , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células HeLa , Interacciones Huésped-Patógeno/fisiología , Humanos , Listeria/patogenicidad , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidad , Isomerasa de Peptidilprolil/metabolismo
12.
Anat Rec (Hoboken) ; 301(12): 1986-1990, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30312025

RESUMEN

The actin cytoskeleton has long been recognized as a crucial sub-cellular filament system that is responsible for governing fundamental events ranging from cell division and muscle contraction to whole cell motility and the maintenance of tissue integrity. Consequently, it is not surprising that this network is the focus of over 100,000 different manuscripts. Alterations in the actin cytoskeleton lead to an assortment of diseases and serve as a target for a variety of pathogens. Here we have brought together a collection of primary research articles and reviews that underscore the broad influence this filament system has on organisms. Anat Rec, 301:1986-1990, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Citoesqueleto de Actina/fisiología , Citoesqueleto de Actina/ultraestructura , Actinas/fisiología , Actinas/ultraestructura , Movimiento Celular/fisiología , Citoesqueleto de Actina/química , Actinas/análisis , Animales , Humanos , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/ultraestructura
13.
mBio ; 9(2)2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636431

RESUMEN

Palladin is an important component of motile actin-rich structures and nucleates branched actin filament arrays in vitro Here we examine the role of palladin during Listeria monocytogenes infections in order to tease out novel functions of palladin. We show that palladin is co-opted by L. monocytogenes during its cellular entry and intracellular motility. Depletion of palladin resulted in shorter and misshapen comet tails, and when actin- or VASP-binding mutants of palladin were overexpressed in cells, comet tails disintegrated or became thinner. Comet tail thinning resulted in parallel actin bundles within the structures. To determine whether palladin could compensate for the Arp2/3 complex, we overexpressed palladin in cells treated with the Arp2/3 inhibitor CK-666. In treated cells, bacterial motility could be initiated and maintained when levels of palladin were increased. To confirm these findings, we utilized a cell line depleted of multiple Arp2/3 complex subunits. Within these cells, L. monocytogenes failed to generate comet tails. When palladin was overexpressed in this Arp2/3 functionally null cell line, the ability of L. monocytogenes to generate comet tails was restored. Using purified protein components, we demonstrate that L. monocytogenes actin clouds and comet tails can be generated (in a cell-free system) by palladin in the absence of the Arp2/3 complex. Collectively, our results demonstrate that palladin can functionally replace the Arp2/3 complex during bacterial actin-based motility.IMPORTANCE Structures containing branched actin filaments require the Arp2/3 complex. One of the most commonly used systems to study intracellular movement generated by Arp2/3-based actin motility exploits actin-rich comet tails made by Listeria Using these infections together with live imaging and cell-free protein reconstitution experiments, we show that another protein, palladin, can be used in place of Arp2/3 to form actin-rich structures. Additionally, we show that palladin is needed for the structural integrity of comet tails as its depletion or mutation of critical regions causes dramatic changes to comet tail organization. These findings are the first to identify a protein that can functionally replace the Arp2/3 complex and have implications for all actin-based structures thought to exclusively use that complex.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endocitosis , Interacciones Huésped-Patógeno , Listeria monocytogenes/fisiología , Locomoción , Fosfoproteínas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/antagonistas & inhibidores , Animales , Línea Celular , Humanos , Indoles/metabolismo
14.
J Exp Biol ; 221(Pt 11)2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29674378

RESUMEN

A sphincter on the inferior vena cava can protect the heart of a diving mammal from overload when elevated abdominal pressures increase venous return, yet sphincters are reported incompetent or absent in some cetacean species. We previously hypothesized that abdominal pressures are elevated and pulsatile in fluking cetaceans, and that collagen is deposited on the diaphragm according to pressure levels to resist deformation. Here, we tested the hypothesis that cetaceans generating high abdominal pressures need a more robust sphincter than those generating low pressures. We examined diaphragm morphology in seven cetacean and five pinniped species. All odontocetes had morphologically similar sphincters despite large differences in collagen content, and mysticetes had muscle that could modulate caval flow. These findings do not support the hypothesis that sphincter structure correlates with abdominal pressures. To understand why a sphincter is needed, we simulated the impact of oscillating abdominal pressures on caval flow. Under low abdominal pressures, simulated flow oscillated with each downstroke. Under elevated pressures, a vascular waterfall formed, greatly smoothing flow. We hypothesize that cetaceans maintain high abdominal pressures to moderate venous return and protect the heart while fluking, and use their sphincters only during low-fluking periods when abdominal pressures are low. We suggest that pinnipeds, which do not fluke, maintain low abdominal pressures. Simulations also showed that retrograde oscillations could be transmitted upstream from the cetacean abdomen and into the extradural veins, with potentially adverse repercussions for the cerebral circulation. We propose that locomotion-generated pressures have influenced multiple aspects of the cetacean vascular system.


Asunto(s)
Caniformia/fisiología , Cetáceos/fisiología , Buceo/fisiología , Vena Cava Inferior/fisiología , Animales , Caniformia/anatomía & histología , Cetáceos/anatomía & histología , Diafragma/fisiología , Femenino , Masculino , Presión
15.
J Exp Biol ; 220(Pt 19): 3464-3477, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28978638

RESUMEN

Internal pressures change throughout a cetacean's body during swimming or diving, and uneven pressures between the thoracic and abdominal compartments can affect the cardiovascular system. Pressure differentials could arise from ventral compression on each fluke downstroke or by a faster equilibration of the abdominal compartment with changing ambient ocean pressures compared with the thoracic compartment. If significant pressure differentials do develop, we would expect the morphology of the diaphragm to adapt to its in vivo loading. Here, we tested the hypothesis that significant pressure differentials develop between the thoracic and abdominal cavities in diving cetaceans by examining diaphragms from several cetacean and pinniped species. We found that: (1) regions of cetacean diaphragms possess subserosal collagen fibres that would stabilize the diaphragm against craniocaudal stretch; (2) subserosal collagen covers 5-60% of the thoracic diaphragm surface, and area correlates strongly with published values for swimming speed of each cetacean species (P<0.001); and (3) pinnipeds, which do not locomote by vertical fluking, do not possess this subserosal collagen. These results strongly suggest that this collagen is associated with loads experienced during a dive, and they support the hypothesis that diving cetaceans experience periods during which abdominal pressures significantly exceed thoracic pressures. Our results are consistent with the generation of pressure differentials by fluking and by different compartmental equilibration rates. Pressure differentials during diving would affect venous and arterial perfusion and alter transmural pressures in abdominal arteries.


Asunto(s)
Contencion de la Respiración , Cetáceos/fisiología , Diafragma/fisiología , Buceo , Abdomen/fisiología , Animales , Organismos Acuáticos/fisiología , Caniformia/fisiología , Femenino , Masculino , Presión , Tórax/fisiología
16.
Stem Cells ; 35(12): 2366-2378, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28905451

RESUMEN

A critical event during kidney organogenesis is the differentiation of podocytes, specialized epithelial cells that filter blood plasma to form urine. Podocytes derived from human pluripotent stem cells (hPSC-podocytes) have recently been generated in nephron-like kidney organoids, but the developmental stage of these cells and their capacity to reveal disease mechanisms remains unclear. Here, we show that hPSC-podocytes phenocopy mammalian podocytes at the capillary loop stage (CLS), recapitulating key features of ultrastructure, gene expression, and mutant phenotype. hPSC-podocytes in vitro progressively establish junction-rich basal membranes (nephrin+ podocin+ ZO-1+ ) and microvillus-rich apical membranes (podocalyxin+ ), similar to CLS podocytes in vivo. Ultrastructural, biophysical, and transcriptomic analysis of podocalyxin-knockout hPSCs and derived podocytes, generated using CRISPR/Cas9, reveals defects in the assembly of microvilli and lateral spaces between developing podocytes, resulting in failed junctional migration. These defects are phenocopied in CLS glomeruli of podocalyxin-deficient mice, which cannot produce urine, thereby demonstrating that podocalyxin has a conserved and essential role in mammalian podocyte maturation. Defining the maturity of hPSC-podocytes and their capacity to reveal and recapitulate pathophysiological mechanisms establishes a powerful framework for studying human kidney disease and regeneration. Stem Cells 2017;35:2366-2378.


Asunto(s)
Organoides/metabolismo , Podocitos/metabolismo , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Edición Génica , Humanos , Riñón/metabolismo , Riñón/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo
17.
Biol Reprod ; 96(6): 1288-1302, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28486663

RESUMEN

The endoplasmic reticulum (ER) in Sertoli cells is a component of unique adhesion junctions (ectoplasmic specializations-ESs) and is closely associated with structures termed tubulobulbar complexes (TBCs) that internalize intercellular junctions during sperm release and during the translocation of spermatocytes through the blood-testis barrier. A role for the ER in Ca2+ regulation at ESs and TBCs has been suspected, but evidence for this function has proved elusive. Using electron microscopy, we define two new ER-plasma membrane (PM) contact sites in apical Sertoli cell processes. One of these sites occurs at TBCs where flattened lamellar cisternae of ER envelope the swollen bulb regions of the complexes, and where the gap between adjacent membranes is 12 nm. The other is at the periphery of apical processes where the gap between membranes is 13-14 nm. Using immunolocalization at the light and electron microscopic levels, we demonstrate that Ca2+ regulatory machinery is present at the ESs attached to spermatid heads, and at ER-PM contacts. Sarco/endoplasmic reticulum Ca2+-ATPase 2 (ATP2A2, SERCA2) is present at ESs; transient receptor potential channel subfamily M member 6 (TRPM6), Homer1 (HOMER1), and inositol 1,4,5-trisphosphate receptor (ITPR, IP3R) are present at ER-PM contacts associated with TBC bulbs; and stromal interacting molecule 1 (STIM1), Orai1 (ORAI1), and ATP2A2 are present at the ER-PM contacts around the margins of Sertoli cell apical processes. In Sertoli cells, the molecular machinery associated with ER generated Ca2+ fluxes is present in regions and structures directly related to junction remodeling-a process necessary for sperm release.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Retículo Endoplásmico/fisiología , Uniones Intercelulares/fisiología , Células de Sertoli/fisiología , Animales , Regulación de la Expresión Génica , Masculino , Ratas , Ratas Sprague-Dawley , Células de Sertoli/ultraestructura
18.
Curr Biol ; 27(5): 673-679, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28216319

RESUMEN

Peripheral nerves are susceptible to stretch injury [1-4] and incorporate structural waviness at the level of the axons, fascicles, and nerve trunk to accommodate physiological increases in length [5, 6]. It is unknown whether there are limits to the amount of deformation that waviness can accommodate. In rorqual whales, a sub-group of baleen whales, nerves running through the ventral groove blubber (VGB) associated with the floor of the mouth routinely experience dramatically large deformations. In fact, some of these nerves more than double their length during lunge feeding and then recoil to a short, compressed state after each lunge [7-9]. It is unknown how these nerves have adapted to operate in both extended and recoiled states. Using micro-CT and mechanics, we have discovered that the VGB nerves from fin whales require two levels of waviness to prevent stretch damage in both extended and recoiled states. The entire nerve core itself is highly folded when recoiled and appears buckled. This folding provides slack for extension but unavoidably generates large stretches at the bends that could damage nerve fascicles within the core. The strain at the bends is minimized by the specific waveform adopted by the core [10, 11], while the existing bending strains are accommodated by a second level of waviness in the individual fascicles that avoids stretch of the fascicle itself. Structural hierarchy partitions the waviness between the two length scales, providing a mechanism to maintain total elongation while preventing the stretching of fascicles at the bends when recoiled.


Asunto(s)
Conducta Alimentaria/fisiología , Ballena de Aleta/fisiología , Nervios Periféricos/fisiología , Animales , Fenómenos Biomecánicos , Cadáver , Microtomografía por Rayos X
19.
Anat Rec (Hoboken) ; 299(10): 1449-55, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27348857

RESUMEN

Basal tubulobulbar complexes (TBCs) that occur at attachment sites between neighboring Sertoli cells are subcellular machines that internalize intercellular junctions during movement of spermatocytes from basal to adluminal compartments of the seminiferous epithelium. Each complex consists of an elongate tubular extension of two attached plasma membranes, and is capped at its distal end by a clathrin-coated pit. The tubular region is surrounded by a cuff of actin arranged in a dendritic network. Near the end of the complex, a bulbous region forms that lacks the actin cuff but is closely associated with cisternae of endoplasmic reticulum. The bulb eventually buds from the complex and enters endocytic compartments of the Sertoli cell. Previous research has shown that when the actin network is perturbed using the actin filament-disruptor, cytochalasin D, apical tubulobulbar complexes that are associated with spermatids were associated with lower levels of actin, patchy actin networks and swollen tubular regions. Here we explored the effects of actin network perturbation on the morphology of basal tubulobulbar complexes in stage V seminiferous tubules. Isolated rat testes were perfused ex vivo for one hour with oxygenated Krebs-Henseleit buffer (with BSA) containing either 40 µM cytochalasin D or control solution containing DMSO and perfusion-fixed for electron microscopy. Compared to control, actin cuffs in drug-treated TBCs appeared less uniform and patchy. In addition, the tubular regions of the complexes appeared swollen. Our results are consistent with the conclusion that intact networks of actin filaments are required for maintaining the structural integrity of basal TBCs. Anat Rec, 299:1449-1455, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Actinas/metabolismo , Epitelio Seminífero/metabolismo , Células de Sertoli/metabolismo , Animales , Uniones Intercelulares/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Epitelio Seminífero/citología
20.
Cell Tissue Res ; 363(2): 449-59, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26239909

RESUMEN

Francisella novicida is a surrogate pathogen commonly used to study infections by the potential bioterrorism agent, Francisella tularensis. One of the primary sites of Francisella infections is the liver where >90% of infected cells are hepatocytes. It is known that once Francisella enter cells it occupies a membrane-bound compartment, the Francisella-containing vacuole (FCV), from which it rapidly escapes to replicate in the cytosol. Recent work examining the Francisella disulfide bond formation (Dsb) proteins, FipA and FipB, have demonstrated that these proteins are important during the Francisella infection process; however, details as to how the infections are altered in epithelial cells have remained elusive. To identify the stage of the infections where these Dsbs might act during epithelial infections, we exploited a hepatocyte F. novicida infection model that we recently developed. We found that F. novicida ΔfipA-infected hepatocytes contained bacteria clustered within lysosome-associated membrane protein 1-positive FCVs, suggesting that FipA is involved in the escape of F. novicida from its vacuole. Our morphological evidence provides a tangible link as to how Dsb FipA can influence Francisella infections.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/patología , Francisella/fisiología , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Animales , Proteínas Bacterianas/genética , Línea Celular , Células Epiteliales/ultraestructura , Francisella/ultraestructura , Hepatocitos/microbiología , Hepatocitos/patología , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones Endogámicos BALB C , Mutación/genética , Vacuolas/metabolismo , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...