Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Front Vet Sci ; 10: 1251535, 2023.
Article En | MEDLINE | ID: mdl-38105773

Introduction: In veterinary medicine, abdominal computer tomographic (CT) examinations regularly require a minimum of two scans, with a native scan (true unenhanced, TUE) as a reference for the subsequent contrast-enhanced CT scan (CECT). Spectral detector CT (SDCT) offers the possibility to calculate virtual non-contrast (VNC) images from the post-contrast scan, but this has not yet been investigated in veterinary medicine. The purpose of this study was to assess the reliability of VNC images for abdominal organs in 44 dogs without abdominal pathologies by evaluating their quantitative and qualitative parameters compared to TUE images. We hypothesized that the subtraction of iodine is sufficient in the VNC series compared to the TUE series and that the image quality of the SDCT series is superior to conventional CT images. Methods: Corresponding attenuation values in the VNC and TUE series regarding the regions of interest (ROI) in different parenchymal organs and major vessels of the abdominal cavity were assessed by means of a two one-sided t-test (TOST) and Bland-Altman plots. Additionally, the signal-to-noise ratio (SNR) was calculated for each ROI in the different series. In the second step, two board-certified veterinary radiologists made a qualitative assessment of VNC images vs. TUE images in consensus by rating the iodine subtraction, image noise, and image quality of VNC images based on a specific 5-point Likert scale. Results: The difference in corresponding Hounsfield units (HUs) between TUE and VNC images was less than 10 HU in 78.67% of all ROIs. Regarding the limit of less than 10 HU, in the performed TOST, significant p-values of < 0.05 were reached for the liver, spleen, pancreas, and musculature, implying equivalence of both modalities. The quality of spectral base image (SBI) data was rated equivalent to calculated conventional images in the subjective assessment by reaching an average Likert scale score of 3.2 points. Discussion: VNC images calculated from SDCT data prove a valid alternative to conventional TUE images in the abdominal organs of canine patients without abdominal pathology. VNC offers the possibility to reduce time under general anesthesia and minimize radiation exposure. Future studies are needed to prove the application of this method in clinically diseased patients.

2.
BMC Vet Res ; 19(1): 244, 2023 Nov 23.
Article En | MEDLINE | ID: mdl-37993920

BACKGROUND: Syringomyelia is a spinal cord cavity containing cerebrospinal fluid (CSF)-like fluid. If syringomyelia asymmetrically involves the dorsal horn grey matter of the spinal cord, affected dogs show increased signs of dysesthesia and neuropathic pain, like increased itching behaviour. In the dorsal horn, amongst others, receptors for Interleukin-31 (IL-31) can be found. IL-31 is one of the main cytokines involved in the pathogenesis of pruritus in atopic dermatitis in different species. This study investigates suspected elevated levels of IL-31 in serum and CSF of dogs showing signs of pain or increased itching behaviour related to syringomyelia. The IL-31 were measured in archived samples (52 serum and 35 CSF samples) of dogs with syringomyelia (n = 48), atopic dermatitis (n = 3) and of healthy control dogs (n = 11) using a competitive canine IL-31 ELISA. RESULTS: Mean serum IL-31 level in dogs with syringomyelia was 150.1 pg/ml (n = 39), in dogs with atopic dermatitis 228.3 pg/ml (n = 3) and in healthy dogs 80.7 pg/ml (n = 10). Mean CSF IL-31 value was 146.3 pg/ml (n = 27) in dogs with syringomyelia and 186.2 pg/ml (n = 8) in healthy dogs. Individual patients with syringomyelia (especially dogs with otitis media or otitis media and interna or intervertebral disc herniation) showed high IL-31 levels in serum and CSF samples, but the difference was not statistically significant. IL-31 serum and CSF levels did not differ significantly in dogs with syringomyelia with or without itching behaviour and with or without signs of pain. CONCLUSION: Based on this study, increased IL-31 levels seem not to be correlated with itching behaviour or signs of pain in dogs with syringomyelia, but might be caused by other underlying diseases.


Dermatitis, Atopic , Dog Diseases , Neuralgia , Otitis Media , Syringomyelia , Dogs , Animals , Syringomyelia/veterinary , Syringomyelia/pathology , Dermatitis, Atopic/veterinary , Interleukins , Neuralgia/veterinary , Spinal Cord Dorsal Horn/pathology , Pruritus/veterinary , Otitis Media/veterinary , Dog Diseases/pathology , Cerebrospinal Fluid
5.
Animals (Basel) ; 13(19)2023 Oct 06.
Article En | MEDLINE | ID: mdl-37835731

Epilepsy is a common neurological disorder in veterinary practice, complicated by frequent occurrence of medication-resistant epilepsy. In human medicine, it has been noted that some patients with medication-resistant epilepsy have in fact other reasons for their apparent medication-resistance. The aim of this retrospective study was to describe the issue of pseudoresistance using as an example a population of dogs presented with presumed medication-resistant epilepsy and provide an in-depth review of what is known in human medicine about pseudoresistant epilepsy. One-hundred fifty-two cases were identified with medication-resistant epilepsy, of which 73% had true medication-resistant epilepsy and 27% patients had pseudoresistance. Low serum anti-seizure medication levels were the most common cause of pseudoresistance, present in almost half of the cases (42%), followed by inadequate choice of drugs or dosages (22%), misclassification (22%) or misdiagnosis (9%) of epilepsy and poor compliance (9%). All cases of pseudoresistance, except for one, responded to a modification of the initial therapy protocol. Pseudoresistance can bias clinical trials, misinform the clinical decision-making process, delay diagnosis and treatment, and misinform owners about their pets' prognosis. A substantial proportion of these cases can have improvement of their seizure frequency or achieve seizure freedom upon modification of their therapeutic protocol.

6.
Front Vet Sci ; 10: 1263976, 2023.
Article En | MEDLINE | ID: mdl-37808104

Idiopathic vestibular syndrome (IVS) is one of the most common neurological disorders in veterinary medicine. However, its diagnosis and treatment varies between publications. The aim of the current study was to gather experts' opinion about IVS definition, diagnosis, and treatment. An online-survey was used to assess neurology specialists' opinion about the definition, diagnosis and treatment of IVS. The study demonstrated that the definition, diagnosis, and treatment of IVS are largely consistent worldwide, with the EU prioritising less frequently advanced imaging and more often otoscopy to rule out other diseases. IVS was defined by most specialists as an acute to peracute, improving, non-painful peripheral vestibular disorder that often affects cats of any age and geriatric dogs. Regarding diagnosis, a detailed neurological examination and comprehensive blood tests, including thyroid values, blood pressure, and otoscopic examination, was seen as crucial. A thorough workup may also involve MRI and CSF analysis to rule out other causes of vestibular dysfunction. Treatment of IVS typically involved intravenous fluid therapy and the use of an antiemetic, with maropitant once daily being the preferred choice among specialists. Antinausea treatment was considered, however, only by a handful specialists. This survey-based study provides valuable insights from neurology experts and highlights areas that require further research to bridge the gap between theory and practice.

7.
Front Vet Sci ; 10: 1200311, 2023.
Article En | MEDLINE | ID: mdl-37266380
8.
Animals (Basel) ; 13(9)2023 Apr 28.
Article En | MEDLINE | ID: mdl-37174542

In surgical treatment of cranial cruciate ligament disease in dogs, Tibial Plateau Levelling Osteotomy (TPLO) and Tibial Tuberosity Advancement (TTA) are commonly established procedures and have proven effective in restoring limb function. Unlike clinical outcome, economic aspects have not been studied as extensively. However, the surgical intervention poses an enormous financial burden on patients' owners. In a veterinary practice setting, this study compares prices for TPLO and TTA and examines prices differences as well as potential cost drivers. Charges for veterinary treatments are based on the Gebührenordnung für Tierärztinnen und Tierärzte (GOT), which is mandatory for veterinarians in Germany but allows a certain range in billing. This study found that TPLO is charged at a higher price than TTA; however, this might not cover the additional costs of this procedure. The price is also associated with weight, heavier dogs being more expensive. The underlying strategies for pricing decisions may be based on costs, as efforts for TPLO and heavier dogs are higher in terms of a prolonged surgical time, the number of staff involved and in surgeons' training. Price setting may also be based on a quality promise, suggesting better clinical outcome in a more expensive procedure. Future investigations should involve economic considerations and consider cost-effectiveness analysis when evaluating surgical treatment options.

9.
J Virol Methods ; 317: 114733, 2023 07.
Article En | MEDLINE | ID: mdl-37068591

ß-Propiolactone (BPL) is an organic compound widely used as an inactivating agent in vaccine development and production, for example for SARS-CoV, SARS-CoV-2 and Influenza viruses. Inactivation of pathogens by BPL is based on an irreversible alkylation of nucleic acids but also on acetylation and cross-linking between proteins, DNA or RNA. However, the protocols for BPL inactivation of viruses vary widely. Handling of infectious, enriched SARS-CoV-2 specimens and diagnostic samples from COVID-19 patients is recommended in biosafety level (BSL)- 3 or BSL-2 laboratories, respectively. We validated BPL inactivation of SARS-CoV-2 in saliva samples with the objective to use saliva from COVID-19 patients for training of scent dogs for the detection of SARS-CoV-2 positive individuals. Therefore, saliva samples and cell culture medium buffered with NaHCO3 (pH 8.3) were comparatively spiked with SARS-CoV-2 and inactivated with 0.1 % BPL for 1 h (h) or 71 h ( ± 1 h) at 2-8 °C, followed by hydrolysis of BPL at 37 °C for 1 or 2 h, converting BPL into non-toxic beta-hydroxy-propionic acid. SARS-CoV-2 inactivation was demonstrated by a titre reduction of up to 10^4 TCID50/ml in the spiked samples for both inactivation periods using virus titration and virus isolation, respectively. The validated method was confirmed by successful inactivation of pathogens in saliva samples from COVID-19 patients. Furthermore, we reviewed the currently available literature on SARS-CoV-2 inactivation by BPL. Accordingly, BPL-inactivated, hydrolysed samples can be handled in a non-laboratory setting. Furthermore, our BPL inactivation protocols can be adapted to validation experiments with other pathogens.


COVID-19 , Viruses , Dogs , Animals , Propiolactone , Saliva , Odorants , COVID-19/diagnosis , Virus Inactivation , SARS-CoV-2
10.
BMC Vet Res ; 19(1): 57, 2023 Mar 03.
Article En | MEDLINE | ID: mdl-36864510

BACKGROUND: Epilepsy is the most common chronic neurological disease in dogs. More than two-thirds of these patients suffer from associated behavioural comorbidities. The latter could have their origin in partially overlapping pathomechanisms, with the intestinal microbiome as a potential key link between them. The current arsenal of drugs for epilepsy management remains limited. Most canine patients continue to have seizures despite treatment and the occurrence of comorbidities is not sufficiently addressed, limiting quality of life of affected dogs and owners. Therefore, novel additional epilepsy management options are urgently needed. The microbiome-gut-brain axis may serve as a new target for the development of innovative multimodal therapeutic approaches to overcome current shortcomings in epilepsy management. METHODS: A six-month prospective, randomised, double-blinded, placebo-controlled, crossover, dietary trial was designed to investigate the potential of the psychobiotic Bifidobacterium longum on behavioural comorbidities in canine epilepsy. Seizure semiology will be evaluated as a secondary outcome measure. Thirty-four privately owned dogs are planned to be included in the ongoing study meeting the following inclusion criteria: Dogs displaying increased anxiety/fear behaviour since the start of the idiopathic epilepsy. Tier II confidence level of the International Veterinary Epilepsy Task Force for the diagnosis of idiopathic epilepsy, with a maximum seizure interval of 3 month and a minimum of three generalised seizures within that period and chronically treated with at least one antiseizure drug without improvement in seizure frequency Each dog will receive the allocated supplement (probiotic vs. placebo) alongside its normal diet for a 3-month period. After a three-week wash out period, the second phase starts by administering the respective other supplement for another 3 months. DISCUSSION: The current study considers modern high-quality standards for epilepsy medication trials. Common biasing effects should be limited to a possible minimum (regression-to-the mean effect, placebo effect, observer effect), ensuring a high validity and accuracy of the acquired results, thus enabling a representative nature of the efficacy of Bifidobacterium longum as add-on supplement for dogs suffering from epilepsy and its comorbidities. This publication should provide a description of the study procedure and data acquisition methods, including prognosed statistical analysis.


Dog Diseases , Epilepsy , Dogs , Animals , Prospective Studies , Quality of Life , Epilepsy/drug therapy , Epilepsy/veterinary , Seizures/drug therapy , Seizures/veterinary , Diet , Dog Diseases/drug therapy , Clinical Trials, Veterinary as Topic
11.
J Vet Intern Med ; 37(2): 606-617, 2023 Mar.
Article En | MEDLINE | ID: mdl-36847997

BACKGROUND: Blood-brain barrier (BBB) permeability can be assessed quantitatively using advanced imaging analysis. HYPOTHESIS/OBJECTIVES: Quantification and characterization of blood-brain barrier dysfunction (BBBD) patterns in dogs with brain tumors can provide useful information about tumor biology and assist in distinguishing between gliomas and meningiomas. ANIMALS: Seventy-eight hospitalized dogs with brain tumors and 12 control dogs without brain tumors. METHODS: In a 2-arm study, images from a prospective dynamic contrast-enhanced (DCE; n = 15) and a retrospective archived magnetic resonance imaging study (n = 63) were analyzed by DCE and subtraction enhancement analysis (SEA) to quantify BBB permeability in affected dogs relative to control dogs (n = 6 in each arm). For the SEA method, 2 ranges of postcontrast intensity differences, that is, high (HR) and low (LR), were evaluated as possible representations of 2 classes of BBB leakage. BBB score was calculated for each dog and was associated with clinical characteristics and tumor location and class. Permeability maps were generated, using the slope values (DCE) or intensity difference (SEA) of each voxel, and analyzed. RESULTS: Distinctive patterns and distributions of BBBD were identified for intra- and extra-axial tumors. At a cutoff of 0.1, LR/HR BBB score ratio yielded a sensitivity of 80% and specificity of 100% in differentiating gliomas from meningiomas. CONCLUSIONS AND CLINICAL IMPORTANCE: Blood-brain barrier dysfunction quantification using advanced imaging analyses has the potential to be used for assessment of brain tumor characteristics and behavior and, particularly, to help differentiating gliomas from meningiomas.


Brain Neoplasms , Dog Diseases , Glioma , Meningeal Neoplasms , Meningioma , Dogs , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Meningioma/diagnostic imaging , Meningioma/veterinary , Retrospective Studies , Prospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/veterinary , Brain Neoplasms/complications , Magnetic Resonance Imaging/veterinary , Glioma/diagnostic imaging , Glioma/veterinary , Glioma/complications , Meningeal Neoplasms/complications , Meningeal Neoplasms/pathology , Meningeal Neoplasms/veterinary , Contrast Media , Dog Diseases/diagnostic imaging
12.
Front Vet Sci ; 10: 1124231, 2023.
Article En | MEDLINE | ID: mdl-36814465

Behavioral problems are highly prevalent in domestic dogs, negatively affecting the quality of life of dogs and their owners. In humans and dogs, neuropsychological or neurobehavioral disorders can be associated with deviations in various neurotransmitter systems. Previous evidence has revealed correlations between urinary neurotransmitters and various behavioral disorders; however, a causal relationship has not yet been conclusively demonstrated. Non-invasive urinary neurotransmitter analysis may identify specific biomarkers, which enable a more differentiated assessment of canine behavioral disorders in the future and contribute to more effective neuromodulatory treatment decisions and monitoring. This approach could offer new insights into underlying pathomechanisms of canine neurobehavioral disorders. This study assessed urinary neurotransmitter levels and the descriptive behavior profile of 100 dogs using established rating scales (Canine Behavioral Assessment and Research Questionnaire, Attention Deficit Hyperactivity Disorder Rating Scale, Dog Personality Questionnaire, Canine Cognitive Dysfunction Rating Scale), and explored relationships between these variables. No correlation was found between urinary neurotransmitters and the assessed behavior profiles; however, age-, sex- and neuter-related influences were identified. The lack of correlation could be explained by the many confounding factors influencing both behavior and urinary neurotransmitter excretion, including age, sex and neuter status effects, and methodological issues e.g., low discriminatory power between anxiety and aggression in the descriptive behavior evaluation. Urinary neurotransmitter testing could not be validated as a tool for canine behavior evaluation in this study. However, reliable assessment methods with low susceptibility to human biases could be valuable in the future to support behavioral-phenotype diagnoses.

13.
Front Vet Sci ; 9: 1004637, 2022.
Article En | MEDLINE | ID: mdl-36532339

Tibial Plateau Leveling Osteotomy (TPLO) or Tibial Tuberosity Advancement (TTA) are commonly used surgical techniques for correction of cranial cruciate ligament (CCL) rupture in dogs. This systematic review aims to investigate whether one technique is superior to the other. Seventy-two studies on surgical management of CCL rupture have been identified and evaluated in regard of subjective and objective gait analysis criteria, development of osteoarthritis (OA), thigh circumference measurements, goniometry, joint stability, pain and complication rates. Almost half (47.2 %) of the studies were considered of low quality of evidence, leading to high heterogeneity in quality among studies; this posed a major limitation for an evidence-based systematic review of both surgical techniques. Out of 72 studies, there were only eleven blinded randomized clinical trials, of which five were rated with a low overall risk of bias. However, both techniques were considered to be successful management options. Subjective and objective gait analysis revealed no lameness at long-term evaluation for the majority of the patients. However, it appeared that TTA lead to better OA scores up to 6 months postoperatively, while TPLO had a lower rate of surgical site infections. In summary, no method can be clearly preferred, as most of the study evaluated were subpar. Studies with a high level of evidence are therefore urgently needed for such a common surgical procedure.

14.
BMJ Glob Health ; 7(11)2022 11.
Article En | MEDLINE | ID: mdl-36368765

INTRODUCTION: Previous research demonstrated that medical scent detection dogs have the ability to distinguish SARS-CoV-2 positive from negative samples with high diagnostic accuracy. To deploy these dogs as a reliable screening method, it is mandatory to examine if canines maintain their high diagnostic accuracy in real-life screening settings. We conducted a study to evaluate the performance of medical scent detection dogs under real-life circumstances. METHODS: Eight dogs were trained to detect SARS-CoV-2 RT-qPCR-positive samples. Four concerts with a total of 2802 participants were held to evaluate canines' performance in screening individuals for SARS-CoV-2 infection. Sweat samples were taken from all participants and presented in a line-up setting. In addition, every participant had been tested with a SARS-CoV-2 specific rapid antigen test and a RT-qPCR and they provided information regarding age, sex, vaccination status and medical disease history. The participants' infection status was unknown at the time of canine testing. Safety measures such as mask wearing and distance keeping were ensured. RESULTS: The SARS-CoV-2 detection dogs achieved a diagnostic specificity of 99.93% (95% CI 99.74% to 99.99%) and a sensitivity of 81.58% (95% CI 66.58% to 90.78%), respectively. The overall rate of concordant results was 99.68%. The majority of the study population was vaccinated with varying vaccines and vaccination schemes, while several participants had chronic diseases and were under chronic medication. This did not influence dogs' decisions. CONCLUSION: Our results demonstrate that SARS-CoV-2 scent detection dogs achieved high diagnostic accuracy in a real-life scenario. The vaccination status, previous SARS-CoV-2 infection, chronic disease and medication of the participants did not influence the performance of the dogs in detecting the acute infection. This indicates that dogs provide a fast and reliable screening option for public events in which high-throughput screening is required.


COVID-19 , Humans , Dogs , Animals , COVID-19/diagnosis , SARS-CoV-2 , Sensitivity and Specificity , Mass Screening
15.
Front Vet Sci ; 9: 935430, 2022.
Article En | MEDLINE | ID: mdl-36277072

Consumption of medium-chain triglycerides (MCT) has been shown to improve seizure control, reduce behavioural comorbidities and improve cognitive function in epileptic dogs. However, the exact metabolic pathways affected by dietary MCT remain poorly understood. In this study, we aimed to identify changes in the metabolome and neurotransmitters levels relevant to epilepsy and behavioural comorbidities associated with the consuming of an MCT supplement (MCT-DS) in dogs with idiopathic epilepsy (IE). Metabolic alterations induced by a commercial MCT-DS in a population of 28 dogs with IE were evaluated in a 6-month multi-centre, prospective, randomised, double-blinded, controlled cross-over trial design. A metabolic energy requirement-based amount of 9% MCT or control oil was supplemented to the dogs' stable base diet for 3 months, followed by the alternative oil for another 3 months. A validated, quantitative nuclear magnetic resonance (NMR) spectroscopy platform was applied to pre- and postprandially collected serum samples to compare the metabolic profile between both DS and baseline. Furthermore, alterations in urinary neurotransmitter levels were explored. Five dogs (30%) had an overall reduction in seizure frequency of ≥50%, and were classified as MCT-responders, while 23 dogs showed a ≤50% reduction, and were defined as MCT non-responders. Amino-acid metabolism was significantly influenced by MCT consumption compared to the control oil. While the serum concentrations of total fatty acids appeared similar during both supplements, the relative concentrations of individual fatty acids differed. During MCT supplementation, the concentrations of polyunsaturated fatty acids and arachidonic acid were significantly higher than under the control oil. ß-Hydroxybutyric acid levels were significantly higher under MCT supplementation. In total, four out of nine neurotransmitters were significantly altered: a significantly increased γ-aminobutyric acid (GABA) concentration was detected during the MCT-phase accompanied by a significant shift of the GABA-glutamate balance. MCT-Responders had significantly lowered urinary concentrations of histamine, glutamate, and serotonin under MCT consumption. In conclusion, these novel data highlight metabolic changes in lipid, amino-acid and ketone metabolism due to MCT supplementation. Understanding the metabolic response to MCT provides new avenues to develop better nutritional management with improved anti-seizure and neuroprotective effects for dogs with epilepsy, and other behavioural disorders.

16.
Front Vet Sci ; 9: 911026, 2022.
Article En | MEDLINE | ID: mdl-36061112

To provide students of veterinary medicine with the necessary day 1 competences, e-learning offerings are increasingly used in addition to classical teaching formats such as lectures. For example, virtual patients offer the possibility of case-based, computer-assisted learning. A concept to teach and test clinical decision-making is the key feature (KF) approach. KF questions consist of three to five critical points that are crucial for the case resolution. In the current study usage, learning success, usability and acceptance of KF cases as neurological virtual patients should be determined in comparison to the long cases format. Elective courses were offered in winter term 2019/20 and summer term 2020 and a total of 38 virtual patients with neurological diseases were presented in the KF format. Eight cases were provided with a new clinical decision-making application (Clinical Reasoning Tool) and contrasted with eight other cases without the tool. In addition to the evaluation of the learning analytics (e.g., processing times, success rates), an evaluation took place after course completion. After 229 course participations (168 individual students and additional 61 with repeated participation), 199 evaluation sheets were completed. The average processing time of a long case was 53 min, while that of a KF case 17 min. 78% of the long cases and 73% of KF cases were successfully completed. The average processing time of cases with Clinical Reasoning Tool was 19 min. The success rate was 58.3 vs. 60.3% for cases without the tool. In the survey, the long cases received a ranking (1 = very good, 6 = poor) of 2.4, while KF cases received a grade of 1.6, 134 of the respondents confirmed that the casework made them feel better prepared to secure a diagnosis in a real patient. Flexibility in learning (n = 93) and practical relevance (n = 65) were the most frequently listed positive aspects. Since KF cases are short and highlight only the most important features of a patient, 30% (n = 70) of respondents expressed the desire for more specialist information. KF cases are suitable for presenting a wide range of diseases and for training students' clinical decision-making skills. The Clinical Reasoning Tool can be used for better structuring and visualizing the reasoning process.

17.
Animals (Basel) ; 12(13)2022 Jun 26.
Article En | MEDLINE | ID: mdl-35804538

The oral palatability of functional foods such as medium-chain triglycerides (MCT) play a crucial role in owner and patient compliance when used as an adjunct in the management of health conditions such as epilepsy. Despite the promising benefits, the palatability of MCT has not undergone a more recent evaluation in dogs. The aim of this study was to assess the palatability and tolerance of short-term, daily supplementation of a 10% metabolic energy based MCT oil volume compared to a tasteless control oil in healthy dogs. An at-home, randomized, double-blinded, controlled single-bowl palatability test with three five-days phases was conducted. Data were collected from nineteen healthy dogs via study visits, feeding diary and eating questionnaires. No difference in the average food intake or intake ratio between food with and without oil supplementation or between the two oil groups was found. The mean food intake time was longer under MCT. In conclusion, MCT oil given as a short-term supplement is well tolerated and palatable in a healthy canine population, with only some changes in eating behaviour. Our results support earlier evidence that MCT oil is a well-tolerated additive in the nutritional management of different diseases such as epilepsy or dementia in dogs.

18.
Front Med (Lausanne) ; 9: 877259, 2022.
Article En | MEDLINE | ID: mdl-35783627

There is a growing number of COVID-19 patients experiencing long-term symptoms months after their acute SARS-CoV-2 infection. Previous research proved dogs' ability to detect acute SARS-CoV-2 infections, but has not yet shown if dogs also indicate samples of patients with post-COVID-19 condition (Long COVID). Nine dogs, previously trained to detect samples of acute COVID-19 patients, were confronted with samples of Long COVID patients in two testing scenarios. In test scenario I (samples of acute COVID-19 vs. Long COVID) dogs achieved a mean sensitivity (for acute COVID-19) of 86.7% (95%CI: 75.4-98.0%) and a specificity of 95.8% (95%CI: 92.5-99.0%). When dogs were confronted with Long COVID and negative control samples in scenario IIa, dogs achieved a mean sensitivity (for Long COVID) of 94.4 (95%CI: 70.5-100.0%) and a specificity of 96.1% (95%CI: 87.6-100.0%). In comparison, when acute SARS-CoV-2 positive samples and negative control samples were comparatively presented (scenario IIb), a mean sensitivity of 86.9 (95%CI: 55.7-100.0%) and a specificity of 88.1% (95%CI: 82.7-93.6%) was attained. This pilot study supports the hypothesis of volatile organic compounds (VOCs) being long-term present after the initial infection in post-COVID-19 patients. Detection dogs, trained with samples of acute COVID-19 patients, also identified samples of Long COVID patients with a high sensitivity when presented next to samples of healthy individuals. This data may be used for further studies evaluating the pathophysiology underlying Long COVID and the composition of specific VOC-patterns released by SARS-CoV-2 infected patients throughout the course of this complex disease.

19.
BMC Vet Res ; 18(1): 88, 2022 Mar 07.
Article En | MEDLINE | ID: mdl-35249530

BACKGROUND: Meningioma is the most common primary brain neoplasm in dogs. Further information is required regarding the expected long-term prognosis of dogs following the surgical resection of an intracranial meningioma together with the influence of adjunctive therapies. Whilst there have been several studies reporting the long-term outcome of intracranial meningioma resection following surgery alone, surgery with the use of an ultrasonic aspirator, surgery combined with radiotherapy and surgery combined with the addition of hydroxyurea, it is currently unclear which type of adjunctive therapy is associated with the most favourable outcomes. The objective of this study is to describe the presentation and outcome of dogs undergoing surgery for the resection of an intracranial meningioma and the effect of clinical factors, adjunctive therapies and meningioma histopathological subtype on the long-term outcome. RESULTS: A hundred and one dogs that had intracranial surgery for meningioma resection were investigated from four referral centres. 94% of dogs survived to hospital discharge with a median survival time of 386 days. Approximately 50% of dogs survived for less than a year, 25% survived between 1 and 2 years, 15% survived between 2 and 3 years and 10% survived for greater than 3 years following discharge from hospital. One or more adjunctive therapies were used in 75 dogs and the analysis of the data did not reveal a clear benefit of a specific type of adjunctive therapy. Those dogs that had a transfrontal approach had a significantly reduced survival time (MST 184 days) compared to those dogs that had a rostrotentorial approach (MST 646 days; p < 0.05). There was no association between meningioma subtype and survival time. CONCLUSIONS: This study did not identify a clear benefit of a specific type of adjunctive therapy on the survival time. Dogs that had a transfrontal approach had a significantly reduced survival time. Intracranial surgery for meningioma resection offers an excellent prognosis for survival to discharge from hospital with a median long term survival time of 386 days.


Dog Diseases , Meningeal Neoplasms , Meningioma , Animals , Dog Diseases/diagnosis , Dog Diseases/surgery , Dogs , Meningeal Neoplasms/pathology , Meningeal Neoplasms/surgery , Meningeal Neoplasms/veterinary , Meningioma/surgery , Meningioma/veterinary , Prognosis , Retrospective Studies , Treatment Outcome
20.
Front Med (Lausanne) ; 8: 749588, 2021.
Article En | MEDLINE | ID: mdl-34869443

Background: Testing of possibly infected individuals remains cornerstone of containing the spread of SARS-CoV-2. Detection dogs could contribute to mass screening. Previous research demonstrated canines' ability to detect SARS-CoV-2-infections but has not investigated if dogs can differentiate between COVID-19 and other virus infections. Methods: Twelve dogs were trained to detect SARS-CoV-2 positive samples. Three test scenarios were performed to evaluate their ability to discriminate SARS-CoV-2-infections from viral infections of a different aetiology. Naso- and oropharyngeal swab samples from individuals and samples from cell culture both infected with one of 15 viruses that may cause COVID-19-like symptoms were presented as distractors in a randomised, double-blind study. Dogs were either trained with SARS-CoV-2 positive saliva samples (test scenario I and II) or with supernatant from cell cultures (test scenario III). Results: When using swab samples from individuals infected with viruses other than SARS-CoV-2 as distractors (test scenario I), dogs detected swab samples from SARS-CoV-2-infected individuals with a mean diagnostic sensitivity of 73.8% (95% CI: 66.0-81.7%) and a specificity of 95.1% (95% CI: 92.6-97.7%). In test scenario II and III cell culture supernatant from cells infected with SARS-CoV-2, cells infected with other coronaviruses and non-infected cells were presented. Dogs achieved mean diagnostic sensitivities of 61.2% (95% CI: 50.7-71.6%, test scenario II) and 75.8% (95% CI: 53.0-98.5%, test scenario III), respectively. The diagnostic specificities were 90.9% (95% CI: 87.3-94.6%, test scenario II) and 90.2% (95% CI: 81.1-99.4%, test scenario III), respectively. Conclusion: In all three test scenarios the mean specificities were above 90% which indicates that dogs can distinguish SARS-CoV-2-infections from other viral infections. However, compared to earlier studies our scent dogs achieved lower diagnostic sensitivities. To deploy COVID-19 detection dogs as a reliable screening method it is therefore mandatory to include a variety of samples from different viral respiratory tract infections in dog training to ensure a successful discrimination process.

...