Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 46(6): 1421-1424, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720202

RESUMEN

Knowledge of saturation intensity of gain or absorption plays a fundamental role in a variety of applications ranging from lasers to many nonlinear optical processes. Here, we present an analytical expression for open-aperture Z-scan transmission for accurately measuring the saturation intensity in the low absorbance samples but at arbitrary pump intensities. We exploit this formalism to investigate the absorption saturation of LiYF4:Yb3+ (YLF:Yb) in the anti-Stokes excitation region for optical refrigeration at high pump intensities. An absorption saturation intensity of 14.5±1kW/cm2 was measured in YLF:Yb at 1020 nm (E||c) at room temperature.

2.
Opt Express ; 27(21): 29710-29718, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684228

RESUMEN

Optical cooling of a YLF:Yb single crystal to 87 K, well below the minimum achievable temperature predicted from existing theory, has been observed. This discrepancy between theory and data has motivated us to revisit the current model of optical refrigeration, in particular the critical role of parasitic background absorption. Challenging experiments that measured the cooling efficiency as a function of temperature reveal that the background absorption coefficient decreases with temperature, resulting in a significant enhancement of the cooling efficiency at cryogenic temperatures. These discoveries emphasize the high sensitivity of optical cooling to impurity-mediated processes and show the necessity of formulating a cooling model that includes the temperature dependence of the background absorption. To properly characterize the cooling properties of any sample, it is necessary to measure its low-temperature performance.

3.
Opt Lett ; 44(6): 1419-1422, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874668

RESUMEN

We report the complete characterization of various cooling-grade Tm-doped crystals including, to the best of our knowledge, the first demonstration of optical refrigeration in Tm:YLF crystals. Room temperature laser cooling efficiencies of 1% and 2% (mol) Tm:YLF and 1% Tm:BYF crystals at different excitation polarizations are measured, and their external quantum efficiency and background absorption are extracted. By performing detailed low-temperature spectroscopic analysis of the samples, global minimum achievable temperatures of 160 to 110 K are estimated. The potential of Tm-doped crystals to realize mid-IR optical cryocoolers and radiation balanced lasers (RBLs) in the eye-safe region of the spectrum is discussed, and a promising two-tone RBL in a tandem structure of Tm:YLF and Ho:YLF crystals is proposed.

4.
Appl Opt ; 55(16): 4414-7, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27411196

RESUMEN

A Yb:YLF crystal has been investigated in a femtosecond oscillator pumped by two 400 mW single-mode fiber-coupled diodes emitting at 976 nm and mode locked with a semiconductor saturable absorber mirror. Almost Fourier transform-limited pulses with durations of 87 and 107 fs were demonstrated for extraordinary and ordinary polarizations, respectively. This is, to the best of our knowledge, the first demonstration of sub-100 fs pulses with Yb:YLF, and it proves the potential for ultrashort pulse generation and amplification with this material.

5.
Opt Express ; 23(7): 8216-26, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968660

RESUMEN

Laser cooling in solids is based on anti-Stokes luminescence, via the annihilation of lattice phonons needed to compensate the energy of emitted photons, higher than absorbed ones. Usually the anti-Stokes process is obtained using a rare-earth active ion, like Yb. In this work we demonstrate a novel approach for optical cooling based not only to Yb anti-Stokes cycle but also to virtuous energy-transfer processes from the active ion, obtaining an increase of the cooling efficiency of a single crystal LiYF(4) (YLF) doped Yb at 5at.% with a controlled co-doping of 0.0016% Thulium ions. A model for efficiency enhancement based on Yb-Tm energy transfer is also suggested.

6.
Opt Express ; 22(23): 28572-83, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25402099

RESUMEN

We investigated the effect of rare earth impurities on the cooling efficiency of Yb³âº:LiYF4 (Yb:YLF). The refrigeration performance of two single crystals, doped with 5%-at. Yb and with identical history but with different amount of contaminations, have been compared by measuring the cooling efficiency curves. Spectroscopic and elemental analyses of the samples have been carried out to identify the contaminants, to quantify their concentrations and to understand their effect on the cooling efficiencies. A model of energy transfer processes between Yb and other rare earth ions is suggested, identifying Erbium and Holmium as elements that produce a detrimental effect on the cooling performance.


Asunto(s)
Fluoruros/química , Compuestos de Litio/química , Fenómenos Ópticos , Refrigeración , Iterbio/química , Itrio/química , Cristalización , Transferencia de Energía , Iones , Modelos Teóricos , Espectrometría de Fluorescencia , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA