Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Gene ; 911: 148357, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38462023

PURPOSE: The most common malignancy among women worldwide is breast cancer. The estrogen receptor plays a vital role in this cancer. One of the most well-known mechanisms that affects the activity of this receptor is its phosphorylation by protein kinase pathways. Hesperetin, a flavonoid abundant in citrus species such as lemons, grapefruits, and oranges, is the aglycone form of hesperidin. It has undergone thorough evaluation for its potential anti-cancer properties, particularly in the context of breast cancer. Studies have shown that hesperetin has an effect on intracellular kinase pathways. The aim of this study was to investigate the effect of hesperetin on the expression, phosphorylation and activity of estrogen receptor alpha (ERα) in MCF-7 breast cancer cell line. STUDY DESIGN AND METHODS: MCF-7 cells were cultured in RPMI-1640 phenol red-free medium supplemented with charcoal-stripped FBS and treated with hesperetin. The MTT method was used to evaluate cell survival. The levels of the ERα protein and its phosphorylated form (Ser118) were determined via western blotting. A luciferase reporter vector was used to evaluate ERE activity. RESULTS: The results of this study indicated that hesperetin reduced the survival of MCF-7 cells in a dose-dependent manner. The expression and phosphorylation (at Ser118) of the ERα significantly increased and decreased, respectively, in the groups treated with hesperetin. Hesperetin increased the activity of the ERα in the absence of E2, although these differences were not statistically significant. Conversely, in the presence of E2, hesperetin caused a significant decrease in receptor activity. CONCLUSION: Based on the results of this study, it can be concluded that hesperetin has a significant effect on ERα expression, phosphorylation and activity.


Breast Neoplasms , Hesperidin , Female , Humans , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , MCF-7 Cells , Hesperidin/pharmacology , Phosphorylation , Estradiol , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation
3.
Int J Pharm ; 618: 121649, 2022 Apr 25.
Article En | MEDLINE | ID: mdl-35278600

In this study, a drug delivery system based on lipid liquid crystal (LLC) was developed for the long-term delivery of risperidone to improve psychological treatment. Optimal LLC formulation was achieved based on maximum release after 60 days with different ratios of phosphatidylcholine (PC) to sorbitol monooleate (PC: SMO), tween grade 80 (w/w %), and tocopherol acetate (TA) (w/w %) using the Box-Behnken method. In vitro and ex vivo studies, pharmacokinetics, and histopathological examination in rabbits were conducted to compare the optimal LLC with Risperdal CONSTA®. The optimum formulation containing the PC to SMO ratio of 58.6%, tween 0.82% w/w, and TA 3.6% w/w was selected because it had the highest drug release percentage (100%) during about two months. Polarized optical microscopy (POM) revealed HII mesophase with a 2-dimensional structure. Cell culture also revealed moderate cytotoxicity for LLC-risperidone. Pharmacokinetic data displayed that the optimal LLC created a more consistent drug serum level within 60 days, and histopathology results demonstrated slight to moderate damage in rabbits' organs. Furthermore, the accelerated stability test confirmed optimum stability for LLC and risperidone. This study confirmed the better pharmacokinetic potentials of SMO-based LLC systems compared with Risperdal CONSTA®, which would promote patient compliance and obviate the difficulties of additional oral therapy.


Liquid Crystals , Risperidone , Animals , Drug Liberation , Lipids , Liquid Crystals/chemistry , Polysorbates , Rabbits , Risperidone/pharmacokinetics
...