Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 29(2): 1014-1020, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34608369

RESUMEN

Soil contamination by SARS-CoV-2 is highly probable because soil can collect several transporters of the virus, such as fallout aerosols, wastewaters, relatively purified sludges, and organic residues. However, the fate and status of SARS-CoV-2 in soil and the possible risks for human health through contaminated food are unknown. Therefore, this perspective paper discusses the challenges of determining the SARS-CoV-2 in soil and the mechanisms concerning its adsorption, movement, and infectivity in soil, considering what has already been reported by perspective papers published up to May 2021. These issues are discussed, drawing attention to the soil virus bibliography and considering the chemical structure of the virus. The mechanistic understanding of the status and behavior of SARS-CoV-2 in soil requires setting up an accurate determination method. In addition, future researches should provide insights into i) plant uptake and movement inside the plant, ii) virus adsorption and desorption in soil with the relative infectivity, and iii) its effects on soil functions. Models should simulate spatial localization of virus in the soil matrix.

2.
Environ Sci Pollut Res Int ; 28(8): 9133-9145, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33128712

RESUMEN

This work aims to synthesize akaganeite nanoparticles (AKNPs) by using microwave and use them to adsorb Congo red dye (CR) from the aqueous solution. The AKNPs with an average particle size of about 50 nm in width and 100 nm in length could be fabricated in 20 min. The effects of pH, CR initial concentration, adsorption time, and adsorbent dosage on the adsorption process were investigated and the artificial neural network (ANN) was used to analyze the adsorption data. The various ANN structures were examined in training the data to find the optimal model. The structure with training function, TRAINLM; adaptation learning function, LARNGDM; transfer function, LOGSIG (in hidden layer) and PURELIN (in output layer); and 10 neutrons in hidden layer having the highest correlation (R2 = 0.996) and the lowest MSE (4.405) is the optimal ANN structure. The consistency between the experimental data and the data predicted by the ANN model showed that the behavior of the adsorption process of CR onto AKNPs under different conditions can be estimated by the ANN model. The adsorption kinetics was studied by fitting the data into pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion models. The results showed that the adsorption kinetics obeyed the pseudo-second-order model and governed by several steps. The adsorption isotherms at the different temperatures were studied by fitting the data to Langmuir, Freundlich, and Temkin isotherm models. The R2 obtained from the Langmuir model was above 0.9 and the highest value in three of four temperatures, suggesting that the adsorption isotherms were the best fit to the Langmuir model and the maximum adsorption capacity was estimated to be more than 150 mg/g. Thermodynamic studies suggested that the adsorption of CR onto AKNPs was a spontaneous and endothermic process and physicochemical adsorption. The obtained results indicated the potential application of microwave-synthesize AKNPs for removing organic dyes from aqueous solutions.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Rojo Congo/análisis , Compuestos Férricos , Concentración de Iones de Hidrógeno , Cinética , Microondas , Redes Neurales de la Computación , Termodinámica
3.
Biomolecules ; 9(9)2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546949

RESUMEN

Phytohormones, similar to soil enzymes, are synthesized and secreted into the soil environment by fungi and microorganisms. Phytohormones are involved in regulating microbial community activity in the rhizosphere. This paper examines how auxins, cytokinins, ethephon and chlorocholine chloride affect the activity of native soil proteases in the organo-mineral horizon of an alpine meadow. In the meadow habitat, native soil proteases were inhibited by auxins whereas the effect of cytokinins on these enzymes was not statistically significant. A similar inhibitory effect on the activity of proteases was shown for ethephon and chlorocholine chloride, both of which also inhibited the activity of native soil proteases in the alpine meadow soil. Overall, the inhibitory effect of phytohormones on the activity of native protease activity may affect plant nutrition by retarding the nitrogen cycle in the soil. This work contributes to our understanding of the influence of substances produced by the rhizosphere that can actively participate in the activity of soil microorganisms and consequently influence the soil nitrogen cycle.


Asunto(s)
Péptido Hidrolasas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Rhizobiaceae/enzimología , Clormequat/farmacología , Citocininas/farmacología , Pradera , Ácidos Indolacéticos/farmacología , Nitrógeno/química , Compuestos Organofosforados/farmacología , Proteínas de Plantas/metabolismo , Microbiología del Suelo
4.
Chirality ; 27(2): 104-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25377997

RESUMEN

Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community.


Asunto(s)
Carbono/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Suelo/química , Dióxido de Carbono , República Checa , Ecosistema , Estaciones del Año , Microbiología del Suelo , Estereoisomerismo
5.
ScientificWorldJournal ; 2014: 730149, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24688424

RESUMEN

In this work, we have attempted to review the current knowledge on the impact of elevated CO2, O3, and UV on soils. Elevated CO2 increases labile and stabile soil C pool as well as efficiency of organic pollutants rhizoremediation and phytoextraction of heavy metals. Conversely, both elevated O3 and UV radiation decrease inputs of assimilates to the rhizosphere being accompanied by inhibitory effects on decomposition processes, rhizoremediation, and heavy metals phytoextraction efficiency. Contrary to elevated CO2, O3, or UV-B decreases soil microbial biomass, metabolisable C, and soil N t content leading to higher C/N of soil organic matter. Elevated UV-B radiation shifts soil microbial community and decreases populations of soil meso- and macrofauna via direct effect rather than by induced changes of litter quality and root exudation as in case of elevated CO2 or O3. CO2 enrichment or increased UV-B is hypothesised to stimulate or inhibit both plant and microbial competitiveness for soluble soil N, respectively, whereas O3 favours only microbial competitive efficiency. Understanding the consequences of elevated CO2, O3, and UV radiation for soils, especially those related to fertility, phytotoxins inputs, elements cycling, plant-microbe interactions, and decontamination of polluted sites, presents a knowledge gap for future research.


Asunto(s)
Dióxido de Carbono/química , Ozono/química , Suelo/química , Rayos Ultravioleta
6.
Chirality ; 26(1): 1-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24249143

RESUMEN

Decontamination of polluted soils using plants is based on the ability of plant species (including transgenic plants) to enhance bioavailability of pollutants in the rhizosphere and support growth of pollutant-degrading microorganisms via root exudation and plant species-specific composition of the exudates. In this work, we review current knowledge of enantiomers of low-molecular-weight (LMW) organic compounds with emphasis on their use in phytoremediation. Many research studies have been performed to search for plants suitable for decontamination of polluted soils. Nevertheless, the natural occurrence of L- versus D-enantiomers of dominant compounds of plant root exudates which play different roles in the complexation of heavy metals, chemoattraction, and support of pollutant-degrading microorganisms were not included in these studies. D-enantiomers of aliphatic organic acids and amino acids or L-enantiomers of carbohydrates occur in high concentrations in root exudates of some plant species, especially under stress, and are less stimulatory for plants to extract heavy metals or for rhizosphere microflora to degrade pollutants compared with L-enantiomers (organic acids and amino acids) or D-carbohydrates. Determining the ratio of L- versus D-enantiomers of organic compounds as a criterion of plant suitability for decontamination of polluted soils and development of other types of bioremediation technologies need to be subjects of future research.


Asunto(s)
Metales Pesados/química , Compuestos Orgánicos , Raíces de Plantas/microbiología , Biodegradación Ambiental , Metabolismo de los Hidratos de Carbono , Complejos de Coordinación/química , Malatos/química , Estereoisomerismo , Tartratos/química
7.
ScientificWorldJournal ; 2013: 524239, 2013 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-24319374

RESUMEN

Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.


Asunto(s)
Ácidos/análisis , Carbohidratos/análisis , Ácidos Grasos/análisis , Suelo/química , Vitaminas/análisis , Agricultura , Metales Pesados/análisis , Compuestos Orgánicos Volátiles/análisis
8.
Chirality ; 25(12): 823-31, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24114978

RESUMEN

Pipecolic acid naturally occurs in microorganisms, plants, and animals, where it plays many roles, including the interactions between these organisms, and is a key constituent of many natural and synthetic bioactive molecules. This article provides a review of current knowledge on the natural occurrence of pipecolic acid and the known and potential significance of its L- and D-enantiomers in different scientific disciplines. Knowledge gaps with perspectives for future research identified within this article include the roles of the L- versus the D-enantiomer of pipecolic acid in plant resistance, nutrient acquisition, and decontamination of polluted soils, as well as rhizosphere ecology and medical issues.


Asunto(s)
Ácidos Pipecólicos/química , Ácidos Pipecólicos/clasificación , Ácidos Pipecólicos/síntesis química , Plantas/química , Estereoisomerismo
9.
ScientificWorldJournal ; 2012: 250805, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701351

RESUMEN

The aim of this study is to present a new method for determining the root-derived extracellular acid phosphomonoesterase (EAPM) activity fraction within the total EAPM activity of soil. EAPM activity was determined for roots, organic and mineral soil. Samples were collected using paired PVC cylinders, inserted to a depth of 15 cm, within seven selected forest stands. Root-derived EAPM formed between 4 and18% of the total EAPM activity of soil from forests of differing maturity. A new approach, presented in this work, enables separation of root-derived EAPM activity from total soil EAPM. Separation of root-derived EAPM from soil provides a better understanding of its role in P-cycling in terrestrial ecosystems. The method presented in this work is a first step towards the separation of root- and microbe-derived EAPM in soils, which are thought to possess different kinetic properties and different sensitivity to environmental change.


Asunto(s)
Ecosistema , Fosfodiesterasa I/análisis , Raíces de Plantas/enzimología , Suelo/química , Árboles/enzimología , República Checa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...