Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38063690

RESUMEN

Mid IR Quantum cascade lasers are of high interest for the scientific community due to their unique applications. However, the QCL designs require careful engineering to overcome some crucial disadvantages. One of them is active region (ARn) overheating, which significantly affects laser characteristics, even in the pulsed mode. In this work, we consider the effects related to the nonequilibrium temperature distribution when thermal resistance formalism is irrelevant. We employ the heat equation and discuss the possible limitations and structural features stemming from the chemical composition of the ARn. We show that the presence of solid solutions in the ARn structure fundamentally limits the heat dissipation in pulsed and CW regimes due to their low thermal conductivity compared with binary compounds. Also, the QCL postgrowths affect the thermal properties of a device closer to CW mode, while it is by far less important in the short-pulsed mode.

2.
Phys Chem Chem Phys ; 25(27): 18364-18377, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37401349

RESUMEN

The rapid development of optical technologies and applications revealed the critical role of point defects affecting device performance. One of the powerful tools to study the influence of defects on charge capture and recombination processes is thermoluminescence. The popular models behind thermoluminescence and carrier capture processes are semi-classic though. They offer a good qualitative description, but implicitly exclude the quantum nature of the accompanying parameters, such as frequency factors and capture cross sections. As a consequence, results obtained for a specific host material cannot be successfully extrapolated to other materials. Thus, the main purpose of our work is to introduce a reliable analytical model that describes non-radiative capture and release of electrons from/to the conduction band (CB). The proposed model is governed by Bose-Einstein statistics (for phonon occupation) and Fermi's golden rule (for resonant charge transfer between the trap and the CB). The constructed model offers a physical interpretation of the capture coefficients and frequency factors, and seamlessly includes the Coulomb neutral/attractive nature of traps. It connects the frequency factor to the overlap of wavefunctions of the delocalized CB and trap states, and suggests a strong dependence on the density of charge distribution, i.e. the ionicity/covalency of the chemical bonds within the host. Separation of the resonance conditions from the accumulation/dissipation of phonons on the site leads to the conclusion that the capture cross-section does not necessarily depend on the trap depth. The model is verified by comparison to the reported experimental data, showing good agreement. As such, the model generates reliable information about trap states whose exact nature is not completely understood and allows performing materials research in a more systematic way.

3.
Phys Chem Chem Phys ; 23(8): 4811-4817, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33605278

RESUMEN

In this paper, we provide a comprehensive theoretical analysis of the electronic structure of InAs(111) surfaces with special attention paid to the energy region close to the fundamental bandgap. Starting from the bulk electronic structure of InAs calculated using the PBE functional with the inclusion of Hubbard correction and spin-orbit coupling, we derive proper values for the bandgap, split-off energy, as well as effective electron, light-hole and heavy-hole masses in full consistent with the available experimental results. Besides that we address the projected density of states associated with p orbitals of bulk indium and arsenic atoms. On the basis of optimized atomic surfaces we recover scanning tunneling microscopy images and calculate the band structure and orbital distributions of surface atoms, which along with accessible experimental data make it possible to speculate on the formation of the electron accumulation layer for both As- and In-terminated InAs(111) surfaces. Moreover, these results are accompanied by charge density distribution simulations.

4.
J Phys Condens Matter ; 32(31): 315503, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32224510

RESUMEN

The study of zinc oxide, within the homogeneous electron gas approximation, results in overhybridization of zinc 3d shell with oxygen 2p shell, a problem shown for most transition metal chalcogenides. This problem can be partially overcome by using LDA + U (or, GGA + U) methodology. However, in contrast to the zinc 3d orbital, Hubbard type correction is typically excluded for the oxygen 2p orbital. In this work, we provide results of electronic structure calculations of an oxygen vacancy in ZnO supercell from ab initio perspective, with two Hubbard type corrections, U Zn-3d and U O-2p. The results of our numerical simulations clearly reveal that the account of U O-2p has a significant impact on the properties of bulk ZnO, in particular the relaxed lattice constants, effective mass of charge carriers as well as the bandgap. For a set of validated values of U Zn-3d and U O-2p we demonstrate the appearance of a localized state associated with the oxygen vacancy positioned in the bandgap of the ZnO supercell. Our numerical findings suggest that the defect state is characterized by the highest overlap with the conduction band states as obtained in the calculations with no Hubbard-type correction included. We argue that the electronic density of the defect state is primarily determined by Zn atoms closest to the vacancy.

5.
J Phys Chem A ; 123(9): 1894-1903, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30775917

RESUMEN

Afterglow is an important phenomenon in luminescent materials and can be desired (e.g., persistent phosphors) or undesired (e.g., scintillators). Understanding and predicting afterglow is often based on analysis of thermally stimulated luminescence (TSL) glow curves, assuming the presence of one or more discrete trap states. Here we present a new approach for the description of the time-dependent afterglow from TSL glow curves using a model with a distribution of trap depths. The method is based on the deconvolution of the energy dependent density of occupied traps derived from TSL glow curves using Tikhonov regularization. To test the validity of this new approach, the procedure is applied to experimental TSL and afterglow data for Lu1Gd2Ga3Al2O12:Ce ceramics codoped with 40 ppm of Yb3+ or Eu3+ traps. The experimentally measured afterglow curves are compared with simulations based on models with and without the continuous trap depth distribution. The analysis clearly demonstrates the presence of a distribution of trap depths and shows that the new approach gives a more accurate description of the experimentally observed afterglow. The new method will be especially useful in understanding and reducing undesired afterglow in scintillators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...