Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Forensic Sci ; 69(4): 1256-1267, 2024 Jul.
Article En | MEDLINE | ID: mdl-38647068

Pinacolyl alcohol (PA), a key forensic marker for the nerve agent Soman (GD), is a particularly difficult analyte to detect by various analytical methods. In this work, we have explored the reaction between PA and 1,1'-carbonyldiimidazole (CDI) to yield pinacolyl 1H-imidazole-1-carboxylate (PIC), a product that can be conveniently detected by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Regarding its GC-MS profile, this new carbamate derivative of PA possesses favorable chromatographic features such as a sharp peak and a longer retention time (RT = 16.62 min) relative to PA (broad peak and short retention time, RT = 4.1 min). The derivative can also be detected by LC-HRMS, providing an avenue for the analysis of this chemical using this technique where PA is virtually undetectable unless present in large concentrations. From a forensic science standpoint, detection of this low molecular weight alcohol signals the past or latent presence of the nerve agent Soman (GD) in a given matrix (i.e., environmental or biological). The efficiency of the protocol was tested separately in the analysis and detection of PA by EI-GC-MS and LC-HRMS when present at a 10 µg/mL in a soil matrix featured in the 44th PT and in a glycerol-rich liquid matrix featured in the 48th Official Organization for the Prohibition of Chemical Weapons (OPCW) Proficiency Test when present at a 5 µg/mL concentration. In both scenarios, PA was successfully transformed into PIC, establishing the protocol as an additional tool for the analysis of this unnatural and unique nerve agent marker by GC-MS and LC-HRMS.


Gas Chromatography-Mass Spectrometry , Soman , Soman/analysis , Soman/analogs & derivatives , Humans , Chromatography, Liquid , Imidazoles/chemistry , Nerve Agents/analysis , Nerve Agents/chemistry , Forensic Toxicology/methods , Chemical Warfare Agents/analysis , Mass Spectrometry/methods , Propanols/chemistry , Propanols/analysis
2.
J Forensic Sci ; 68(6): 2138-2152, 2023 Nov.
Article En | MEDLINE | ID: mdl-37568257

Detection of illicit drugs in the environment, particularly in soils, often suggests the present or past location of a clandestine production center for these substances. Thus, development of efficient methods for the analysis and detection of these chemicals is of paramount importance in the field of chemical forensics. In this work, a method involving the extraction and retrospective confirmation of fentanyl, acetylfentanyl, thiofentanyl, and acetylthiofentanyl using trichloroethoxycarbonylation chemistry in a high clay-content soil is presented. The soil was spiked separately with each fentanyl at two concentrations (1 and 10 µg/g) and their extraction accomplished using ethyl acetate and aqueous NH4 OH (pH ~ 11.4) with extraction recoveries ranging from ~56% to 82% for the high-concentration (10 µg/g) samples while ranging from ~68% to 83% for the low-concentration (1 µg/g) samples. After their extraction, residues containing each fentanyl were reacted with 2,2,2-trichloroethoxycarbonyl chloride (Troc-Cl) to generate two unique and predictable products from each opioid that can be used to retrospectively confirm their presence and identity using EI-GC-MS. The method's limit of detection (MDL/LOD) for Troc-norfentanyl and Troc-noracetylfentanyl were estimated to be 29.4 and 31.8 ng/mL in the organic extracts. In addition, the method's limit of quantitation for Troc-norfentanyl and Troc-noracetylfentanyl were determined to be 88.2 and 95.5 ng/mL, respectively. Collectively, the results presented herein strengthen the use of chloroformate chemistry as an additional chemical tool to confirm the presence of these highly toxic and lethal substances in the environment.


Electrons , Soil , Gas Chromatography-Mass Spectrometry/methods , Clay , Retrospective Studies , Fentanyl/analysis
3.
J Forensic Sci ; 68(6): 1923-1931, 2023 Nov.
Article En | MEDLINE | ID: mdl-37578282

The benzylation of three low molecular weight N,N-disubstituted ethanolamines related to chemical warfare agents (CWAs) to furnish derivatives with improved gas chromatography-mass spectrometry (GC-MS) profiles is described. Due to their low molecular weight and polar nature, N,N-disubstituted ethanolamines are notoriously difficult to detect by routine GC-MS analyses during Organisation for the Prohibition of Chemical Weapons (OPCW) proficiency tests (PTs), particularly in scenarios when they are present at low levels (~1-10 ppm) amidst more abundant interferences. Our studies revealed that the optimal derivatization conditions involved the treatment of the ethanolamine with benzyl bromide in the presence of an inorganic base (e.g., Na2 CO3 ) in dichloromethane at 55°C for 2 h. This optimized set of conditions was then successfully applied to the derivatization of N,N-dimethylethanolamine, N,N-diethylethanolamine and N,N-diisopropylethanolamine present separately at 1 and 10 µg/mL concentrations in a glycerol-rich matrix sample featured in the 48th OPCW PT. The benzylated derivatives of the three ethanolamines possessed retention times long enough to clear the massive glycerol-containing matrix interferences. The protocol herein is introduced as an alternative method for derivatization of these CWA and pharmaceutically important species and should find broad applicability in laboratories where routine forensic analysis is carried out.

4.
Rapid Commun Mass Spectrom ; 35(15): e9123, 2021 Aug 15.
Article En | MEDLINE | ID: mdl-33955039

RATIONALE: Detection of 3-quinuclidinol (3Q), a marker for the chemical warfare agent 3-quinuclidinyl benzilate, is very difficult by gas chromatography-mass spectrometry (GC/MS), providing low, broad signals even when analyzed in isolated form. Therefore, a method that can convert 3Q into a substrate with enhanced detectability by GC/MS would be an important tool for its analysis. METHODS: 2,2,2-Trichloroethoxycarbonyl chloride (TrocCl) was used in the derivatization of 3Q in three different soils of varying composition and total organic content (Virginia type A soil, Nebraska EPA standard soil and Ottawa sand) when present at a 10 µg g-1 concentration in each. A direct derivatization protocol and one involving the pre-extraction of the analyte were evaluated for their individual efficiencies and subsequent analysis using electron ionization GC/MS. RESULTS: The practical derivatization of 3Q, when present at low levels (10 µg g-1 ) in three different soil matrices, was found to be rapid (1 h) and to take place smoothly at ambient temperature (and as low as 4°C). The method detection limit was determined to be 30 ng mL-1 for the Virginia type A soil, 49 ng mL-1 for the Nebraska EPA standard soil and 72 ng mL-1 for the Ottawa sand sample. CONCLUSIONS: An expedient and practical derivatization method for 3Q, a chemical warfare degradation product difficult to detect by GC/MS, has been realized using trichloroethyl chloroformate. The reaction provides 3Q-Troc, a derivative with better detectability than 3Q by electron ionization GC/MS such as peak sharpness and a unique mass spectrum for its unambiguous identification.

5.
Sci Total Environ ; 683: 175-184, 2019 Sep 15.
Article En | MEDLINE | ID: mdl-31146057

A practical and efficient protocol for the derivatization and detection by GC-EI-MS of isopropyl-, pinacolyl- and cyclohexylmethylphosphonic acids, key diagnostic degradation products of the nerve agents sarin, soman and cyclosarin respectively, in six different types of soil matrices is presented. The method involves the in situ conversion of the phosphonic acids to their respective methyl esters using trimethyloxonium tetrafluoroborate when present in the soils at low levels (10 µg g-1) without any prior extractions or soil preparation. The soils employed in our study were Nebraska EPA soil, Georgia soil, silt, Virginia type A soil, regular sand and Ottawa sand and were chosen for their vast differences in composition and physical features. Appealing attributes of the protocol include its rapidity (t < 30 min), mildness (ambient temperature), and practicality that includes the production of the phosphonic methyl esters that can be easily detected by GC-EI-MS and corroborated with the instrument's internal NIST spectral library or the Organisation for the Prohibition of Chemical Weapons (OPCW) central analytical database (OCAD v.21_2019). The overall efficacy of the protocol was then tested on a soil sample featured in the 44th OPCW PT that our laboratory participated in. After preparing the soil so as to give pinacolyl methylphosphonic acid at a 5 µg g-1 concentration, the acid was successfully methylated and detected by GC-EI-MS. The protocol's performance mirrors that of the universally employed diazomethane protocol but accomplishes this without any of the explosive hazards and time consuming reagent preparation commonly associated with it.


Gas Chromatography-Mass Spectrometry/methods , Organophosphorus Compounds/analysis , Soil Pollutants/analysis , Soman/analogs & derivatives , Biomarkers/analysis , Methylation , Nerve Agents/analysis , Retrospective Studies , Sarin/analysis , Soil/chemistry , Soman/analysis
6.
Talanta ; 186: 586-596, 2018 Aug 15.
Article En | MEDLINE | ID: mdl-29784407

Chemical attribution signatures (CAS) associated with different synthetic routes used for the production of Russian VX (VR) were identified. The goal of the study was to retrospectively determine the production method employed for an unknown VR sample. Six different production methods were evaluated, carefully chosen to include established synthetic routes used in the past for large scale production of the agent, routes involving general phosphorus-sulfur chemistry pathways leading to the agent, and routes whose main characteristic is their innate simplicity in execution. Two laboratories worked in parallel and synthesized a total of 37 batches of VR via the six synthetic routes following predefined synthesis protocols. The chemical composition of impurities and byproducts in each route was analyzed by GC/MS-EI and 49 potential CAS were recognized as important markers in distinguishing these routes using Principal Component Analysis (PCA). The 49 potential CAS included expected species based on knowledge of reaction conditions and pathways but also several novel compounds that were fully identified and characterized by a combined analysis that included MS-CI, MS-EI and HR-MS. The CAS profiles of the calibration set were then analyzed using partial least squares discriminant analysis (PLS-DA) and a cross validated model was constructed. The model allowed the correct classification of an external test set without any misclassifications, demonstrating the utility of this methodology for attributing VR samples to a particular production method. This work is part one of a three-part series in this Forensic VSI issue of a Sweden-United States collaborative effort towards the understanding of the CAS of VR in diverse batches and matrices. This part focuses on the CAS in synthesized batches of crude VR and in the following two parts of the series the influence of food matrices on the CAS profiles are investigated.

7.
Talanta ; 186: 607-614, 2018 Aug 15.
Article En | MEDLINE | ID: mdl-29784410

Chemical attribution signatures indicative of O-isobutyl S-(2-diethylaminoethyl) methylphosphonothioate (Russian VX) synthetic routes were investigated in spiked food samples. Attribution signatures were identified using a multifaceted approach: Russian VX was synthesized using six synthetic routes and the chemical attribution signatures identified by GC-MS and LC-MS. Three synthetic routes were then down selected and spiked into complex matrices: bottled water, baby food, milk, liquid eggs, and hot dogs. Sampling and extraction methodologies were developed for these materials and used to isolate the attribution signatures and Russian VX from each matrix. Recoveries greater than 60% were achieved for most signatures in all matrices; some signatures provided recoveries greater than 100%, indicating some degradation during sample preparation. A chemometric model was then developed and validated with the concatenated data from GC-MS and LC-MS analyses of the signatures; the classification results of the model were > 75% for all samples. This work is part three of a three-part series in this issue of the United States-Sweden collaborative efforts towards the understanding of the chemical attribution signatures of Russian VX in crude materials and in food matrices.


Chemical Warfare Agents/isolation & purification , Food Analysis , Food Contamination/analysis , Organothiophosphorus Compounds/isolation & purification , Solid Phase Extraction , Animals , Chemical Warfare Agents/chemistry , Chromatography, Liquid , Drinking Water/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Infant , Infant Food/analysis , Mass Spectrometry , Milk/chemistry , Organothiophosphorus Compounds/chemistry
8.
Talanta ; 186: 615-621, 2018 Aug 15.
Article En | MEDLINE | ID: mdl-29784411

A multivariate model was developed to attribute samples to a synthetic method used in the production of sulfur mustard (HD). Eleven synthetic methods were used to produce 66 samples for model construction. Three chemists working in both participating laboratories took part in the production, with the aim to introduce variability while reducing the influence of laboratory or chemist specific impurities in multivariate analysis. A gas chromatographic/mass spectrometric data set of peak areas for 103 compounds was subjected to orthogonal partial least squares - discriminant analysis to extract chemical attribution signature profiles and to construct multivariate models for classification of samples. For one- and two-step routes, model quality allowed the classification of an external test set (16/16 samples) according to synthesis conditions in the reaction yielding sulfur mustard. Classification of samples according to first-step methodology was considerably more difficult, given the high purity and uniform quality of the intermediate thiodiglycol produced in the study. Model performance in classification of aged samples was also investigated.

9.
J Occup Environ Hyg ; 4(11): 821-30, 2007 Nov.
Article En | MEDLINE | ID: mdl-17763073

A series of polymer solutions were developed for the purpose of immobilizing aerosolized 1-10 mu m sized hazardous biological particles. The polymer solutions were designed as tools for emergency response and remediation personnel. The inhibition of secondary aerosolization and migration of biothreat particles has important implications for public health protection and contamination cleanup. Limiting further dispersion of particles such as Bacillus anthracis spores may reduce inhalation hazards and enhance remediation efficiencies. This study evaluated film-forming polymers that have multiple functional groups capable of attracting and binding particles; these included acrylates, cellulosics, vinyl polymers, and polyurethanes. The selected polymers were combined with appropriate solvents to design solutions that met specific performance objectives. The polymer solutions were then evaluated for key characteristics, such as high adhesion, high elasticity, low density, short drying time, low viscosity, and low surface tension. These solutions were also evaluated for their adhesion to biothreat agent in a series of wind tunnel experiments using highly refined aerosolized Bacillus atrophaeus spores (a simulant for anthrax, 1-3 mu m). Results demonstrated that a polymer solution, an amphoteric acrylate identified as NS-2, was the best candidate for attaching to spores and inhibiting reaerosolization. This polymer solution was anionic, thus providing the electrostatic (coulombic) attraction to cationic spores, had low surface tension, and performed well in wind tunnel tests.


Air Microbiology , Air Pollution, Indoor , Bacillus/drug effects , Hazardous Substances/isolation & purification , Polymers/pharmacology , Air Movements , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Bacillus/growth & development , Hazardous Substances/toxicity , Humans , Solutions/chemistry , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development , Static Electricity , Surface Tension , Time Factors , Tissue Adhesions , Workplace
...