Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Am Soc Mass Spectrom ; 35(4): 683-695, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38518248

RESUMEN

The human cerebellum is an ultraspecialized region of the brain responsible for cognitive functions and movement coordination. The fine mechanisms through which the process of aging impacts such functions are not well understood; therefore, a rigorous exploration of this brain region at the molecular level is deemed necessary. Gangliosides, sialylated glycosphingolipids, highly and specifically expressed in the human central nervous system, represent possible molecular markers of cerebellum development and aging. In this context, for a comprehensive determination of development- and age-specific components, we have conducted here a comparative profiling and structural determination of the gangliosides expressed in fetal cerebellum in two intrauterine developmental stages and aged cerebellum by ion mobility separation (IMS) mass spectrometry (MS) and tandem MS (MS/MS). Due to the high sensitivity and efficiency of separation provided by IMS MS, no less than 551 chemically distinct species were identified, which represents 4.5 times more gangliosides than ever discovered in this brain region. The detailed assessment of fetal vs aged cerebellum gangliosidome showed marked discrepancies not only in the general number of the species expressed, but also in their sialylation patterns, the modifications of the glycan core, and the composition of the ceramides. All of these characteristics are potential markers of cerebellum development and aging. The structural analysis by collision-induced dissociation (CID) documented the occurrence of GD1b (d18:1/18:0) isomer in the fetal cerebellum in the second gestational trimester, with all probability of GQ1b (t18:1/18:0) in the near-term fetus and of GQ1b (d18:1/18:0) in aged cerebellum.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Humanos , Anciano , Espectrometría de Masa por Ionización de Electrospray/métodos , Gangliósidos/análisis , Encéfalo , Cerebelo
2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279335

RESUMEN

Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.


Asunto(s)
Neoplasias Encefálicas , Gangliósidos , Humanos , Gangliósidos/química , Encéfalo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem
3.
Molecules ; 27(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35164008

RESUMEN

Gangliosides (GGs) represent an important class of biomolecules associated with the central nervous system (CNS). In view of their special role at a CNS level, GGs are valuable diagnostic markers and prospective therapeutic agents. By ion mobility separation mass spectrometry (IMS MS), recently implemented by us in the investigation of human CNS gangliosidome, we previously discovered a similarity between GG profiles in CSF and the brain. Based on these findings, we developed IMS tandem MS (MS/MS) to characterize rare human CSF glycoforms, with a potential biomarker role. To investigate the oligosaccharide and ceramide structures, the ions detected following IMS MS separation were submitted to structural analysis by collision-induced dissociation (CID) MS/MS in the transfer cell. The IMS evidence on only one mobility feature, together with the diagnostic fragment ions, allowed the unequivocal identification of isomers in the CSF. Hence, by IMS MS/MS, GalNAc-GD1c(d18:1/18:1) and GalNAc-GD1c(d18:1/18:0) having both Neu5Ac residues and GalNAc attached to the external galactose were for the first time discovered and structurally characterized. The present results demonstrate the high potential of IMS MS/MS for biomarker discovery and characterization in body fluids, and the perspectives of method implementation in clinical analyses targeting the early diagnosis of CNS diseases through molecular fingerprints.


Asunto(s)
Glicoesfingolípidos/líquido cefalorraquídeo , Glicoesfingolípidos/química , Ácido N-Acetilneuramínico/química , Adulto , Secuencia de Carbohidratos , Gangliósidos/líquido cefalorraquídeo , Gangliósidos/química , Humanos , Espectrometría de Movilidad Iónica , Isomerismo , Meningitis/líquido cefalorraquídeo , Meningitis/diagnóstico , Modelos Moleculares , Ácido N-Acetilneuramínico/líquido cefalorraquídeo , Espectrometría de Masas en Tándem/métodos
4.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948386

RESUMEN

The recent identification of plasma membrane (Ca2+)-ATPase (PMCA)-Neuroplastin (Np) complexes has renewed attention on cell regulation of cytosolic calcium extrusion, which is of particular relevance in neurons. Here, we tested the hypothesis that PMCA-Neuroplastin complexes exist in specific ganglioside-containing rafts, which could affect calcium homeostasis. We analyzed the abundance of all four PMCA paralogs (PMCA1-4) and Neuroplastin isoforms (Np65 and Np55) in lipid rafts and bulk membrane fractions from GM2/GD2 synthase-deficient mouse brains. In these fractions, we found altered distribution of Np65/Np55 and selected PMCA isoforms, namely PMCA1 and 2. Cell surface staining and confocal microscopy identified GM1 as the main complex ganglioside co-localizing with Neuroplastin in cultured hippocampal neurons. Furthermore, blocking GM1 with a specific antibody resulted in delayed calcium restoration of electrically evoked calcium transients in the soma of hippocampal neurons. The content and composition of all ganglioside species were unchanged in Neuroplastin-deficient mouse brains. Therefore, we conclude that altered composition or disorganization of ganglioside-containing rafts results in changed regulation of calcium signals in neurons. We propose that GM1 could be a key sphingolipid for ensuring proper location of the PMCA-Neuroplastin complexes into rafts in order to participate in the regulation of neuronal calcium homeostasis.


Asunto(s)
Gangliósido G(M1)/metabolismo , Glicoproteínas de Membrana/metabolismo , Microdominios de Membrana/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Gangliósido G(M1)/análisis , Masculino , Glicoproteínas de Membrana/análisis , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/análisis
5.
Eur J Mass Spectrom (Chichester) ; 27(5): 205-214, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34516313

RESUMEN

We have developed here a superior methodology based on high-resolution mass spectrometry for screening and fragmentation analysis of gangliosides extracted and purified from the human motor cortex . The experiments, conducted on a nanoelectrospray Orbitrap mass spectroscope in the negative ion mode, allowed the discrimination in the native mixture extracted from human motor cortex of no less than 83 different gangliosides, which represents the highest number of structures identified so far in this brain region. The spectral data, acquired in high-resolution mass spectrometry mode with a remarkable sensitivity and an average mass accuracy of 4.48 ppm, also show that the gangliosidome of motor cortex is generally characterized by species exhibiting a much higher degree of sialylation than previously known. Motor cortex was found dominated by complex structures with a sialylation degree ≥3, exhibiting long saccharide chains, in the G1 class. Fucogangliosides and species with the glycan chain elongated by either O-acetylation and/or acetate anion attachments were also detected; the later modification was for the first time discovered in this brain region. Of major significance is the identification of hepta and octasialylated species of GS1 and GO1 type, which are among the structures with the longest oligosaccharide chain discovered so far in the human brain. In the last stage of research, tandem mass spectrometry performed by higher energy collision dissociation provided structural data documenting the occurrence of GT1b (d18:1/20:0) isomer in the human motor cortex.


Asunto(s)
Corteza Motora , Encéfalo , Gangliósidos , Humanos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445547

RESUMEN

Gangliosides serve as antitumor therapy targets and aberrations in their composition strongly correlate with tumor growth and invasiveness. Anaplastic ganglioglioma is a rare, poorly characterized, malignant neuronal-glial tumor type. We present the first comparative characterization of ganglioside composition in anaplastic ganglioglioma vs. peritumoral and healthy brain tissues by combining mass spectrometry and thin-layer chromatography. Anaplastic ganglioglioma ganglioside composition was highly distinguishable from both peritumoral and healthy tissue despite having five to six times lower total content. Ten out of twelve MS-identified ganglioside classes, defined by unique glycan residues, were represented by a large number and considerable abundance of individual species with different fatty acid residues (C16-C24) in ceramide portions. The major structurally identified class was tumor-associated GD3 (>50%) with 11 species; GD3 (d18:1/24:0) being the most abundant. The dominant sphingoid base residue in ganglioside ceramides was sphingosine (d18:1), followed by eicosasphingosine (d20:1). The peritumoral tissue ganglioside composition was estimated as normal. Specific ganglioside composition and large variability of ganglioside ceramide structures determined in anaplastic ganglioglioma demonstrate realistic ganglioside expression patterns and correspond to the profile of high-grade malignancy brain tumors.


Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/patología , Carcinoma/patología , Cromatografía en Capa Delgada/métodos , Ganglioglioma/patología , Gangliósidos/metabolismo , Espectrometría de Masas/métodos , Anciano , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Carcinoma/metabolismo , Femenino , Ganglioglioma/metabolismo , Gangliósidos/análisis , Humanos , Persona de Mediana Edad
7.
J Am Soc Mass Spectrom ; 32(5): 1249-1257, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33900081

RESUMEN

Glioblastoma multiforme (GBM), a malignant, highly aggressive, grade IV brain tumor, which rapidly infiltrates into the nearby tissue, has drawn a significant amount of attention because of its poor prognosis and the limited treatment options available. In GBM, nearly all tumor cells exhibit aberrant cell-surface glycosylation patterns due to the alteration of their biosynthesis or postsynthesis modification process. Since gangliosides (GGs) are acknowledged as tumor-associated antigens, we have carried out here a comprehensive profiling of native ganglioside mixtures extracted and purified from GBM specimens. For this purpose, high performance ion mobility separation mass spectrometry (IMS MS) was thoroughly optimized to allow the discovery of GBM-specific structures and the assessment of their roles as tumor markers or possible associated antigens. GG separation by IMS according to the charge state, carbohydrate chain length, degree of sialylation, and ceramide composition led to the identification of no less than 160 distinct components, which represents 3-fold the number of structures identified before. The detected GGs and asialo-GGs were found characterized by a high heterogeneity in their ceramide and glycan compositions, encompassing up five Neu5Ac residues. The tumor was found dominated in equal and high proportions by GD3 and GT1 forms, with a particular incidence of C24:1 fatty acids in the ceramide. By the occurrence of only one mobility feature and the diagnostic fragment ions, the IMS tandem MS conducted using collision-induced dissociation (CID) disclosed for the first time the presence of GT1c(d18:1/24:1) newly proposed here as a potential GBM marker.


Asunto(s)
Neoplasias Encefálicas/química , Gangliósidos/análisis , Glioblastoma/química , Espectrometría de Masas en Tándem/métodos , Gangliósidos/química , Humanos , Espectrometría de Movilidad Iónica/métodos
8.
Anal Biochem ; 609: 113976, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32987010

RESUMEN

In this study we have optimized nanoelectrospray ionization (nanoESI) high resolution mass spectrometry (HR MS) performed on Orbitrap instrument in the negative ion mode for the determination of the composition and structure of gangliosides extracted from human brain cavernous hemangioma. The optimized HR MS platform, allowed the discrimination of 62 ions, corresponding to 52 different ganglioside species, which represents roughly twice the number of species existing in the current inventory of human brain hemangioma-associated gangliosides. The experiments revealed a ganglioside pattern dominated by GD-type of structures as well as an elevated incidence of species characterized by a low degree of sialylation and short glycan chains, including asialo GA1 (d18:1/18:0), which offer a new perspective upon the ganglioside composition in this benign tumor. Many of the structures are characteristic for this type of tumor only and are to be considered in further investigations for their potential use in early brain hemangioma diagnosis based on molecular markers. The detailed fragmentation analysis performed by collision-induced dissociation (CID) tandem MS provided information of structural elements related to the glycan core and ceramide moiety, which confirmed the molecular configuration of GD3 (d18:1/24:1) and GD3 (d18:1/24:2) species with potential biomarker role.


Asunto(s)
Encéfalo/metabolismo , Gangliósidos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Biomarcadores/análisis , Neoplasias del Sistema Nervioso Central/metabolismo , Ceramidas/química , Gangliósidos/química , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Nanotecnología
9.
J Mass Spectrom ; 55(5): e4502, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31961034

RESUMEN

We have developed here a superior approach based on high-resolution (HR) mass spectrometry (MS) for monitoring the changes occurring with development and aging in the composition and structure of cerebellar gangliosidome. The experiments were focused on the comparative screening and structural analysis of gangliosides expressed in fetal and aged cerebellum by Orbitrap MS with nanoelectrospray ionization (nanoESI) in the negative ion mode. The employed ultrahigh-resolution MS platform allowed the discrimination, without the need of previous separation, of 159 ions corresponding to 120 distinct species in the native ganglioside mixtures from fetal and aged cerebellar biopsies, many more than detected before, when MS platforms of lower resolution were employed. A number of gangliosides, in particular polysialylated belonging to GT, GQ, GP, and GS classes, modified by O-fucosylation, O-acetylation, or CH3 COO- were discovered here, for the first time in human cerebellum. These components, found differently expressed in fetal and aged tissues, indicated that the ganglioside profile in cerebellum is development stage- and age-specific. Following the fragmentation analysis by high-energy collision-induced dissociation (HCD) tandem MS (MS/MS), we have also observed that the intimate structure of certain compounds has not changed during the development and aging of the brain, an aspect which could open new directions in the investigation of ganglioside biomarkers in cerebellar tissue.


Asunto(s)
Cerebelo/química , Cerebelo/crecimiento & desarrollo , Gangliósidos/análisis , Espectrometría de Masas en Tándem/métodos , Anciano , Envejecimiento , Cerebelo/embriología , Feto/química , Humanos , Masculino , Espectrometría de Masa por Ionización de Electrospray/métodos
10.
Biochimie ; 170: 36-48, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31857120

RESUMEN

The proximity of cerebrospinal fluid (CSF) with the brain, its permanent renewal and better availability for research than tissue biopsies, as well as ganglioside (GG) shedding from brain to CSF, impelled lately the development of protocols for the characterization of these glycoconjugates and discovery of central nervous system biomarkers expressed in CSF. Currently, the investigation of CSF gangliosides is focused on concentration measurements of the predominant classes and much less on their profiling and structural analysis. Since we have demonstrated recently the high performance of ion mobility separation mass spectrometry (IMS MS) for compositional and structural determination of human brain GGs, in the present study we have implemented for the first time IMS MS for the exploration of human CSF gangliosidome, in order to generate the first robust mass spectral database of CSF gangliosides. IMS MS separation and screening revealed 113 distinct GG species in CSF, having similar compositions to the species detected in human brain. In comparison with the brain tissue, we have discovered in CSF several components containing fatty acids with odd number of carbon atoms and/or short glycan chains. By tandem MS (MS/MS) we have further analyzed the structure of GD3(d18:1/18:0) and GD2(d18:1/18:0), two glycoforms exhibiting short carbohydrate chains found in CSF, but discovered and characterized previously in brain as well. According to the present results, human CSF and brain show a similar ganglioside pattern, a finding that might be useful in clinical research focused on discovery of ganglioside species associated to neurodegenerative diseases and brain tumors.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Encefalopatías/diagnóstico , Encéfalo/metabolismo , Gangliósidos/líquido cefalorraquídeo , Espectrometría de Masa por Ionización de Electrospray/métodos , Adulto , Encefalopatías/líquido cefalorraquídeo , Humanos
11.
Biochimie ; 163: 142-151, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31201844

RESUMEN

Widely dispersed throughout the entire body tissues, gangliosides (GGs) are essential components of neuronal cell membranes, where exhibit a vital role in neuronal function and brain development, directly influencing the neural tube formation, neurogenesis, neurotransmission, etc. Due to several factors, partial or complete closing faults of the fetal neural tube may occur in the first trimester of pregnancy, generating a series of neural tube defects (NTD), among which anencephaly. The absence in anencephaly of the forebrain and skull bones determines the exposure to the amniotic fluid of the remaining brain tissue and the spinal cord, causing the degeneration of the nervous system tissue. Based on the previously achieved information related to the direct alteration of neural development with deficient concentration of several GGs, a systematic and comparative mass spectrometry (MS) mapping assay on GGs originating from fetuses in different intrauterine developmental stages, i.e. the 29th (denoted An29), 35th (An35) and the 37th (An37) gestational weeks was here conducted. Our approach, based on Orbitrap MS under high sensitivity, resolution and mass accuracy conditions, enabled for the first time the nanoelectrospray ionization, detection and identification of over 150 glycoforms, mainly novel, polysialylated species. Such a pattern, specific for incipient developmental stages reliably documents the brain development stagnation, characteristic for anencephaly. Further, the fragmentation MS2-MS3 experiments by collision induced dissociation (CID) confirmed the incidence in all three samples of GT2(d18:1/16:2) as a potential biomarker. Therefore, this fingerprinting of the anencephalic gangliosidome may serve in development of approaches for routine screening and early diagnosis.


Asunto(s)
Anencefalia/metabolismo , Encéfalo/metabolismo , Desarrollo Fetal , Gangliósidos/análisis , Espectrometría de Masa por Ionización de Electrospray , Anencefalia/diagnóstico , Anencefalia/fisiopatología , Biomarcadores/análisis , Encéfalo/fisiopatología , Exactitud de los Datos , Feto/metabolismo , Feto/fisiopatología , Humanos , Masculino , Metabolómica , Sensibilidad y Especificidad
12.
Analyst ; 143(21): 5234-5246, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30272072

RESUMEN

Clustered into the so-called "glycosynaptic" microdomains in the central nervous system (CNS), gangliosides (GGs) are involved in the formation of functional synapses and neural circuits. Therefore, GGs are important biomarkers in the early diagnosis of CNS pathologies, which are the focus of our research as potential therapeutic targets. A series of neuropsychiatric disorders, including Alzheimer's disease and schizophrenia, are characterized by amnesia and disorientation caused by hippocampal atrophy and diminished cholinergic activity. Based on ion mobility mass spectrometry (IM-MS) capability for the reliable determination of glycopatterns, the changes in the diversity and number of GGs with age and the occurrence of neurological disorders, we report here the development of a high performance IM-MS strategy for assessing the GG profile in a complex mixture extracted from a 20 year old hippocampus. IM separation of GGs based on the charge state, carbohydrate chain length and degree of sialylation led to the detection and identification of 140 species, the largest number of GGs ever reported in an adult hippocampus. Moreover, the obtained data support the concept of GG cholinergic activity. IM tandem MS experiments using collision induced dissociation (CID) confirmed the incidence of GD1b(d18:1/24:1) in the investigated hippocampus specimen.


Asunto(s)
Gangliósidos/química , Hipocampo/química , Adulto , Gangliósidos/aislamiento & purificación , Humanos , Espectrometría de Masas/métodos , Estructura Molecular , Adulto Joven
13.
Biochimie ; 139: 81-94, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28554572

RESUMEN

Gangliosides (GGs), a particular class of glycosphingolipids ubiquitously found in tissues and body fluids, exhibit the highest expression in the central nervous system, especially in brain. GGs are involved in crucial processes, such as neurogenesis, synaptogenesis, synaptic transmission, cell adhesion, growth and proliferation. For these reasons, efforts are constantly invested into development and refinement of specific methods for GG analysis. We have recently shown that ion mobility separation (IMS) mass spectrometry (MS) has the capability to provide consistent compositional and structural information on GGs at high sensitivity, resolution and mass accuracy. In the present paper, we have implemented IMS MS for the first time in the study of a highly complex native GG mixture extracted and purified from human fetal hippocampus. As compared to previous studies, where no separation techniques prior to MS were applied, IMS MS technique has not just generated valuable novel information on the GG pattern characteristic for hippocampus in early developmental stage, but also provided data related to the GG molecular involvement in the synaptic functions by the discovery of 25 novel structures modified by CH3COO-. The detection and identification in fetal hippocampus of a much larger number of GG species than ever reported before was possible due to the ion mobility separation according to the charge state, the carbohydrate chain length and the degree of sialylation. By applying IMS in conjunction with collision induced dissociation (CID) tandem MS (MS/MS), novel GG species modified by CH3COO- attachment, discovered here for the first time, were sequenced and structurally investigated in details. The present findings, based on IMS MS, provide a more reliable insight into the expression and role of gangliosides in human hippocampus, with a particular emphasis on their cholinergic activity at this level.


Asunto(s)
Encéfalo/metabolismo , Feto/metabolismo , Gangliósidos/análisis , Gangliósidos/metabolismo , Hipocampo/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Humanos
14.
Biochimie ; 137: 56-68, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28286312

RESUMEN

Tumor cells are characterized by aberrant glycosylation of the cell surface glycoconjugates. Gangliosides are sialylated glycosphingolipids highly abundant in neural tissue and considered as tumor markers and therapeutic targets. In this study, a detailed characterization of native ganglioside mixtures from glioblastoma multiforme, corresponding peritumoral tissue and healthy human brain was performed using mass spectrometry and high performance thin layer chromatography in order to elucidate their roles as tumor-associated antigens. Distinctive changes in ganglioside expression were determined in glioblastoma compared to healthy brain tissue showing 5 times lower total ganglioside content and higher abundance of simple gangliosides. Glioblastoma gangliosides were characterized by highly diverse ceramide composition with fatty acyl chains varying from 16 to 24 carbon atoms, while in normal and peritumoral tissue mostly C18 chains were found. The most abundant ganglioside in glioblastoma was GD3 (d18:1/18:0), followed by GD3 (d18:1/24:0) that was exclusively detected in glioblastoma tissue. Peritumoral tissue expressed higher abundance of GD3- and nLM1/GM1-species while lower GT1-species vs. normal brain. O-Ac-GD1, known as neurostatin, was detected in normal and peritumoral tissue, but not in glioblastoma. O-Ac-GD3 species were found exclusively in glioblastoma; MS structural characterization of the isomeric form possessing the O-acetylation at the inner sialic acid residue confirmed our previous finding that this isomer is glioma-associated. This, to our knowledge, the most detailed characterization of ganglioside composition in glioblastoma and peritumoral tissue, especially addressing the ceramide variability and O-acetylation of tumor-associated gangliosides, could contribute to recognition of new molecular targets for glioblastoma treatment and sub-classification.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Encéfalo/metabolismo , Gangliósidos/metabolismo , Glioblastoma/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Anciano , Estudios de Casos y Controles , Cromatografía en Capa Delgada , Femenino , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad
15.
Anal Biochem ; 521: 40-54, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28088450

RESUMEN

The gangliosides (GGs) of the central nervous system (CNS) exhibit age and topographic specificity and these patterns may correlate with the functions and pathologies of the brain regions. Here, chloroform extraction, nanoelectrospray (nanoESI) negative ionization, together with Orbitrap high resolution mass spectrometry (MS) determined the topographic and age-related GG specificity in normal adult human brain. Mapping of GG mixtures extracted from 20 to 82 year old frontal and occipital lobes revealed besides a decrease in the GG number with age, a variability of sialylation degree within the brain regions. From the 111 species identified, 105 were distinguished in the FL20, 74 in OL20, 46 in FL82 and 56 in OL82. The results emphasize that within the juvenile brain, GG species exhibit a higher expression in the FL than in OL, while in the aged brain the number of GG species is higher in the OL. By applying MS/MS analysis, the generated fragment ions confirmed the incidence of GT1c (d18:1/18:0) and GT1c (d18:1/20:0) in the investigated samples. The present findings are of major value for further clinical studies carried out using Orbitrap MS in order to correlate gangliosides with CNS disorders.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Gangliósidos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Anal Biochem ; 509: 1-11, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27311552

RESUMEN

We report here on the introduction of mass spectrometry (MS) for profiling of native gangliosides from an extracranial tumor. The analytical approach was based on a modern platform combining the superior sensitivity and reproducibility of fully automated chip-based nanoelectrospray ionization (nanoESI) with the high resolution and mass accuracy provided by a hybrid quadrupole time-of-flight (QTOF) instrument. The feasibility of the method for the analysis of gangliosides, which are much less expressed in extracranial tissues, was here tested using as the model substrate an adrenal neuroblastoma (NB) specimen located in the abdominal region of a 2-year-old infant. Under properly optimized conditions, MS profiling revealed information on at least 61 different gangliosides exhibiting heterogeneity of the glycan and lipid compositions. NB was found dominated by species bearing short-chain oligosaccharide cores with a reduced overall Neu5Ac content. By chip-nanoESI MS, preceding findings related to the GD2 role in NB were confirmed. Moreover, the screening experiments offered novel information supporting the possible biomarker role of GM4, GM3, and GM1 ganglioside classes. Structural analysis of GM1(d18:1/18:2) and GD1(d18:0/19:0) possibly tumor-associated markers, carried out by tandem MS (MS/MS) using collision-induced dissociation (CID) at low energies, indicated that both GM1a and GD1b isomers are present in NB.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/metabolismo , Gangliósidos/metabolismo , Espectrometría de Masas/métodos , Neuroblastoma/metabolismo , Gangliósidos/análisis , Humanos , Lactante , Masculino
17.
Anal Chem ; 88(10): 5166-78, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27088833

RESUMEN

The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series.


Asunto(s)
Gangliósidos/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Ceramidas/química , Lóbulo Frontal/química , Galactosamina/química , Humanos , Estructura Molecular
18.
Carbohydr Res ; 400: 1-8, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25299937

RESUMEN

Gangliosides and sulfated glycosphingolipids, as building and functional components of animal cell membranes, participate in cell-to-cell interactions and signaling, but also in changes of cell architecture due to different pathophysiological events. In order to enable higher throughput and to facilitate structural characterization of gangliosides/sulfo-glycosphingolipids (GSL) and their neutral GSL counterparts by negative ion mass spectrometry (MS) and tandem MS techniques, a database and data analysis application have been developed. In silico developed glycosphingolipid database considers a high diversity of ceramide compositions, several sialic acid types (N-acetylneuraminic acid, N-glycolylneuraminic acid and 2-keto-3-deoxynononic acid) as well as possible additional substitutions/modifications of glycosphingolipids, such as O-acetylation, de-N-acetylation, fucosylation, glucuronosylation, sulfation, attachment of repeating terminal hexose-N-acetylhexosamine- (Hex-HexNAc-)1-6 extension, and possible lactone forms. Data analysis application, named GSL-finder, enables correlation of negative ion MS and/or low-energy tandem MS spectra with the database structures. The GSL-database construction and the GSL-finder application searching rules are explained. Validation conducted on GD1a fraction as well as on complex mixtures of native gangliosides isolated from different mammalian brain tissues (human fetal and adult brain, and calf brain tissue) demonstrated agreement with previous studies. Plain, fast, and automated routine for structural characterization of gangliosides/sulfated glycosphingolipids and their neutral GSL counterparts described here could facilitate and improve mass spectrometric analysis of complex glycosphingolipid mixtures originating from variety of normal and pathological biomaterial, where it is known that distinctive changes in glycosphingolipid composition occur.


Asunto(s)
Bases de Datos de Compuestos Químicos , Gangliósidos/metabolismo , Glicoesfingolípidos/metabolismo , Animales , Bovinos , Ceramidas/química , Ceramidas/metabolismo , Simulación por Computador , Gangliósidos/química , Gangliósidos/clasificación , Glicoesfingolípidos/química , Glicoesfingolípidos/clasificación , Humanos , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Sulfatos/química , Espectrometría de Masas en Tándem
19.
Glycoconj J ; 31(3): 231-45, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24658680

RESUMEN

In this study we report on the first mass spectrometric (MS) investigation of gangliosides and preliminary assessment of the expression and structure in normal fetal neocortex in early developmental stages: 14th (Neo14) and 16th (Neo16) gestational weeks. Ganglioside analysis was carried out using a hybrid quadrupole time-of-flight (QTOF) MS with direct sample infusion by nanoelectrospray ionization (nanoESI) in the negative ion mode. Under optimized conditions a large number of glycoforms i.e. 75 in Neo14 and 71 in Neo16 mixtures were identified. The ganglioside species were found characterized by a high diversity of the ceramide constitution, an elevated sialylation degree (up to pentasialylated gangliosides-GP1) and sugar cores modified by fucosylation (Fuc) and acetylation (O-Ac). Direct comparison between Neo14 and Neo16 revealed a prominent expression of monosialylated structures in the Neo16 as well as the presence of a larger number of polysialylated species in Neo14 which constitutes a clear marker of rapid development-dependant changes in the sialylation. Also the MS screening results highlighted that presumably O-acetylation process occurs faster than fucosylation. CID MS/MS under variable collision energy applied for the first time for structural analysis of a fucosylated pentasialylated species induced an efficient fragmentation with generation of ions supporting Fuc-GP1d isomer in early stage fetal brain neocortex.


Asunto(s)
Gangliósidos/metabolismo , Neocórtex/embriología , Neocórtex/metabolismo , Espectrometría de Masas en Tándem/métodos , Acetilación , Densitometría/métodos , Gangliósidos/análisis , Edad Gestacional , Humanos , Nanotecnología , Espectrometría de Masa por Ionización de Electrospray/métodos
20.
Carbohydr Res ; 382: 1-8, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24140892

RESUMEN

Gangliosides are sialylated membrane glycosphingolipids especially abundant in mammalian brain tissue. Sialic acid O-acetylation is one of the most common structural modifications of gangliosides which considerably influences their chemical properties. In this study, gangliosides extracted from brain tissue of mice with altered ganglioside biosynthesis (St8sia1 null and B4galnt1 null mice) were structurally characterized and their acetylation pattern was analyzed. Extracted native and alkali-treated gangliosides were resolved by high performance thin layer chromatography. Ganglioside mixtures as well as separated individual ganglioside fractions were further analyzed by tandem mass spectrometry. Several O-acetylated brain ganglioside species were found in knockout mice, not present in the wild-type mice. To the best of our knowledge this is the first report on the presence of O-acetylated GD1a in St8sia1 null mice and O-acetylated GM3 species in B4galnt1 null mice. In addition, much higher diversity of abnormally accumulated brain ganglioside species regarding the structure of ceramide portion was observed in knockout versus wild-type mice. Obtained findings indicate that the diversity of brain ganglioside structures as well as acetylation patterns in mice with altered ganglioside biosynthesis, is even higher than previously reported. Further investigation is needed in order to explore the effects of acetylation on ganglioside interactions with other molecules and consequently the physiological role of acetylated ganglioside species.


Asunto(s)
Gangliósidos/química , Gangliósidos/metabolismo , Acetilación , Animales , Química Encefálica , Secuencia de Carbohidratos , Gangliósidos/análisis , Gangliósidos/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...