Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
4.
Phys Rev Lett ; 122(13): 133001, 2019 Apr 05.
Article En | MEDLINE | ID: mdl-31012607

Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance, e.g., in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H^{*}) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing extreme ultraviolet femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states.

5.
Nat Commun ; 9(1): 3162, 2018 08 08.
Article En | MEDLINE | ID: mdl-30089780

Time-resolved photoelectron spectroscopy (TRPES) is a useful approach to elucidate the coupled electronic-nuclear quantum dynamics underlying chemical processes, but has remained limited by the use of low photon energies. Here, we demonstrate the general advantages of XUV-TRPES through an application to NO2, one of the simplest species displaying the complexity of a non-adiabatic photochemical process. The high photon energy enables ionization from the entire geometrical configuration space, giving access to the true dynamics of the system. Specifically, the technique reveals dynamics through a conical intersection, large-amplitude motion and photodissociation in the electronic ground state. XUV-TRPES simultaneously projects the excited-state wave packet onto many final states, offering a multi-dimensional view of the coupled electronic and nuclear dynamics. Our interpretations are supported by ab initio wavepacket calculations on new global potential-energy surfaces. The presented results contribute to establish XUV-TRPES as a powerful technique providing a complete picture of ultrafast chemical dynamics from photoexcitation to the final products.

6.
Opt Express ; 25(13): 14192-14203, 2017 Jun 26.
Article En | MEDLINE | ID: mdl-28789005

Directional breaking of the C-H/C-D molecular bond is manipulated in acetylene (C2H2) and deuterated acetylene (C2D2) by waveform controlled few-cycle mid-infrared laser pulses with a central wavelength around 1.6 µm at an intensity of about 8 × 1013 W/cm2. The directionality of the deprotonation of acetylene is controlled by changing the carrier-envelope phase (CEP). The CEP-control can be attributed to the laser-induced superposition of vibrational modes, which is sensitive to the sub-cycle evolution of the laser waveform. Our experiments and simulations indicate that near-resonant, intense mid-infrared pulses permit a higher degree of control of the directionality of the reaction compared to those obtained in near-infrared fields, in particular for the deuterated species.

7.
Struct Dyn ; 4(6): 061502, 2017 Nov.
Article En | MEDLINE | ID: mdl-29308414

Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid-vacuum interface.

8.
Struct Dyn ; 4(6): 061505, 2017 Nov.
Article En | MEDLINE | ID: mdl-29308417

In the present review, laser fields are so strong that they become part of the electronic potential, and sometimes even dominate the Coulomb contribution. This manipulation of atomic potentials and of the associated states and bands finds fascinating applications in gases and solids, both in the bulk and at the surface. We present some recent spectacular examples obtained within the NCCR MUST in Switzerland.

9.
Rev Sci Instrum ; 87(7): 073102, 2016 Jul.
Article En | MEDLINE | ID: mdl-27475543

We present a new design of a time-preserving extreme-ultraviolet (XUV) monochromator using a semi-infinite gas cell as a source. The performance of this beamline in the photon-energy range of 20 eV-42 eV has been characterized. We have measured the order-dependent XUV pulse durations as well as the flux and the spectral contrast. XUV pulse durations of ≤40 fs using 32 fs, 800 nm driving pulses were measured on the target. The spectral contrast was better than 100 over the entire energy range. A simple model based on the strong-field approximation is presented to estimate different contributions to the measured XUV pulse duration. On-axis phase-matching calculations are used to rationalize the variation of the photon flux with pressure and intensity.

10.
Science ; 350(6262): 790-5, 2015 Nov 13.
Article En | MEDLINE | ID: mdl-26494175

The ultrafast motion of electrons and holes after light-matter interaction is fundamental to a broad range of chemical and biophysical processes. We advanced high-harmonic spectroscopy to resolve spatially and temporally the migration of an electron hole immediately after ionization of iodoacetylene while simultaneously demonstrating extensive control over the process. A multidimensional approach, based on the measurement and accurate theoretical description of both even and odd harmonic orders, enabled us to reconstruct both quantum amplitudes and phases of the electronic states with a resolution of ~100 attoseconds. We separately reconstructed quasi-field-free and laser-controlled charge migration as a function of the spatial orientation of the molecule and determined the shape of the hole created by ionization. Our technique opens the prospect of laser control over electronic primary processes.

11.
Nat Commun ; 6: 7039, 2015 May 05.
Article En | MEDLINE | ID: mdl-25940229

All attosecond time-resolved measurements have so far relied on the use of intense near-infrared laser pulses. In particular, attosecond streaking, laser-induced electron diffraction and high-harmonic generation all make use of non-perturbative light-matter interactions. Remarkably, the effect of the strong laser field on the studied sample has often been neglected in previous studies. Here we use high-harmonic spectroscopy to measure laser-induced modifications of the electronic structure of molecules. We study high-harmonic spectra of spatially oriented CH3F and CH3Br as generic examples of polar polyatomic molecules. We accurately measure intensity ratios of even and odd-harmonic orders, and of the emission from aligned and unaligned molecules. We show that these robust observables reveal a substantial modification of the molecular electronic structure by the external laser field. Our insights offer new challenges and opportunities for a range of emerging strong-field attosecond spectroscopies.

12.
Rev Sci Instrum ; 86(12): 123106, 2015 Dec.
Article En | MEDLINE | ID: mdl-26724005

We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

13.
Rev Sci Instrum ; 86(12): 123905, 2015 Dec.
Article En | MEDLINE | ID: mdl-26724045

A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

14.
Phys Rev Lett ; 113(2): 023001, 2014 Jul 11.
Article En | MEDLINE | ID: mdl-25062172

We report the observation of macroscopic field-free orientation, i.e., more than 73% of CO molecules pointing in the same direction. This is achieved through an all-optical scheme operating at high particle densities (>10(17) cm(-3)) that combines one-color (ω) and two-color (ω+2ω) nonresonant femtosecond laser pulses. We show that the achieved orientation solely relies on the hyperpolarizability interaction as opposed to an ionization-depletion mechanism, thus, opening a wide range of applications. The achieved strong orientation enables us to reveal the molecular-frame anisotropies of the photorecombination amplitudes and phases caused by a shape resonance. The resonance appears as a local maximum in the even-harmonic emission around 28 eV. In contrast, the odd-harmonic emission is suppressed in this spectral region through the combined effects of an asymmetric photorecombination phase and a subcycle Stark effect, generic for polar molecules, that we experimentally identify.

15.
Phys Rev Lett ; 111(24): 243005, 2013 Dec 13.
Article En | MEDLINE | ID: mdl-24483654

We introduce and demonstrate a new approach to measuring coherent electron wave packets using high-harmonic spectroscopy. By preparing a molecule in a coherent superposition of electronic states, we show that electronic coherence opens previously unobserved high-harmonic-generation channels that connect distinct but coherently related electronic states. Performing the measurements in dynamically aligned nitric oxide molecules we observe the complex temporal evolution of the electronic coherence under coupling to nuclear motion. Choosing a weakly allowed transition to prepare the wave packet, we demonstrate an unprecedented sensitivity that arises from optical interference between coherent and incoherent pathways. This mechanism converts a 0.1% excitation fraction into a ∼20% signal modulation.

16.
J Chem Phys ; 137(22): 224303, 2012 Dec 14.
Article En | MEDLINE | ID: mdl-23248999

We study theoretically and experimentally the electronic relaxation of NO(2) molecules excited by absorption of one ∼400 nm pump photon. Semiclassical simulations based on trajectory surface hopping calculations are performed. They predict fast oscillations of the electronic character around the intersection of the ground and first excited diabatic states. An experiment based on high-order harmonic transient grating spectroscopy reveals dynamics occurring on the same time scale. A systematic study of the detected transient is conducted to investigate the possible influence of the pump intensity, pump wavelength, and rotational temperature of the molecules. The quantitative agreement between measured and predicted dynamics shows that, in NO(2), high harmonic transient grating spectroscopy encodes vibrational dynamics underlying the electronic relaxation.

17.
Opt Express ; 20(23): 25843-9, 2012 Nov 05.
Article En | MEDLINE | ID: mdl-23187401

We demonstrate direct amplitude shaping of high harmonics (HHs) using a reflective micromirror array based on micro-electromechanical-system (MEMS) technology. We show independent control over the intensity of each HH in the observed range (14 - 36 eV). These results are used to calculate the control achieved over the temporal structure of the attosecond pulses in the train.

18.
Phys Rev Lett ; 109(14): 143001, 2012 Oct 05.
Article En | MEDLINE | ID: mdl-23083239

Molecular frame high-harmonic spectra of aligned N2 molecules reveal a Cooper-like minimum. By deconvolving the laboratory frame alignment distribution, what was previously thought to be a maximum of emission along the molecular axis is found to be maxima at 35 degrees off axis, with a spectral minimum on axis. Both of these features are supported by photoionization calculations that underline the relationship between high-harmonic spectroscopy and photoionization measurements. The calculations reveal that the on axis spectral minimum is a Cooper-like minimum that arises from the destructive interference of the p and f partial wave contributions to high-harmonic photorecombination. Features such as Cooper minima and shape resonances are ubiquitous in molecular photoionization or recombination.

19.
Phys Rev Lett ; 109(11): 113901, 2012 Sep 14.
Article En | MEDLINE | ID: mdl-23005628

We produce oriented rotational wave packets in CO and measure their characteristics via high harmonic generation. The wave packet is created using an intense, femtosecond laser pulse and its second harmonic. A delayed 800 nm pulse probes the wave packet, generating even-order high harmonics that arise from the broken symmetry induced by the orientation dynamics. The even-order harmonic radiation that we measure appears on a zero background, enabling us to accurately follow the temporal evolution of the wave packet. Our measurements reveal that, for the conditions optimum for harmonic generation, the orientation is produced by preferential ionization which depletes the sample of molecules of one orientation.

20.
Phys Rev Lett ; 108(20): 203001, 2012 May 18.
Article En | MEDLINE | ID: mdl-23003145

Recollision processes provide direct insight into the structure and dynamics of electronic wave functions. However, the strength of the process sets its basic limitations--the interaction couples numerous degrees of freedom. In this Letter we decouple the basic steps of the process and resolve the role of the ionic potential which is at the heart of a broad range of strong field phenomena. Specifically, we measure high harmonic generation from argon atoms. By manipulating the polarization of the laser field we resolve the vectorial properties of the interaction. Our study shows that the ionic core plays a significant role in all steps of the interaction. In particular, Coulomb focusing induces an angular deflection of the electrons before recombination. A complete spatiospectral analysis reveals the influence of the potential on the spatiotemporal properties of the emitted light.


Electrons , Models, Theoretical , Argon/chemistry , Ions/chemistry , Thermodynamics
...