Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Anal Chem ; 96(14): 5392-5398, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38526848

Along with mass spectrometry (MS), ion mobility separations (IMS) are advancing to ever larger biomolecules. The emergence of electrospray ionization (ESI) and native MS enabled the IMS/MS analyses of proteins up to ∼100 kDa in the 1990s and whole protein complexes and viruses up to ∼10 MDa since the 2000s. Differential IMS (FAIMS) is substantially orthogonal to linear IMS based on absolute mobility K and offers exceptional resolution, unique selectivity, and steady filtering readily compatible with slower analytical methods such as electron capture or transfer dissociation (ECD/ETD). However, the associated MS stages had limited FAIMS to ions with m/z < 8000 and masses under ∼300 kDa. Here, we integrate high-definition FAIMS with the Q-Exactive Orbitrap UHMR mass spectrometer that can handle m/z up to 80,000 and MDa-size ions in the native ESI regime. In the initial evaluation, the oligomers of monoclonal antibody adalimumab (148 kDa) are size-selected up to at least the nonamers (1.34 MDa) with m/z values up to ∼17,000. This demonstrates the survival and efficient separation of noncovalent MDa assemblies in the FAIMS process, opening the door to novel analyses of the heaviest macromolecules.


Ion Mobility Spectrometry , Proteins , Mass Spectrometry/methods , Proteins/chemistry , Ions
2.
Nat Methods ; 21(4): 619-622, 2024 Apr.
Article En | MEDLINE | ID: mdl-38443506

Orbitrap-based charge detection mass spectrometry utilizes single-molecule sensitivity to enable mass analysis of even highly heterogeneous, high-mass macromolecular assemblies. For contemporary Orbitrap instruments, the accessible ion detection (recording) times are maximally ~1-2 s. Here by modifying a data acquisition method on an Orbitrap ultrahigh mass range mass spectrometer, we trapped and monitored individual (single) ions for up to 25 s, resulting in a corresponding and huge improvement in signal-to-noise ratio (×5 compared with 1 s), mass resolution (×25) and accuracy in charge and mass determination of Orbitrap-based charge detection mass spectrometry.


Mass Spectrometry , Mass Spectrometry/methods , Spectrum Analysis , Ions
3.
Nat Chem ; 14(5): 515-522, 2022 05.
Article En | MEDLINE | ID: mdl-35273389

To enhance the performance of charge-detection mass spectrometry, we investigated the behaviour of macromolecular single ions on their paths towards and within the Orbitrap analyser. Ions with a mass beyond one megadalton reach a plateau of stability and can be successfully trapped for seconds, travelling a path length of multiple kilometres, thereby enabling precise mass analysis with an effective resolution of greater than 100,000 at a mass-to-charge ratio of 35,000. Through monitoring the frequency of individual ions, we show that these high-mass ions, rather than being lost from the trap, can gradually lose residual solvent molecules and, in rare cases, a single elementary charge. We also demonstrate that the frequency drift of single ions due to desolvation and charge stripping can be corrected, which improves the effective ion sampling 23-fold and gives a twofold improvement in mass precision and resolution.


Mass Spectrometry , Ions/chemistry , Macromolecular Substances/chemistry , Mass Spectrometry/methods
4.
Mol Ther Methods Clin Dev ; 24: 40-47, 2022 Mar 10.
Article En | MEDLINE | ID: mdl-34977271

Adeno-associated viruses (AAVs) represent important gene therapy vectors with several approved clinical applications and numerous more in clinical trials. Genome packaging is an essential step in the bioprocessing of AAVs and needs to be tightly monitored to ensure the proper delivery of transgenes and the production of effective drugs. Current methods to monitor genome packaging have limited sensitivity, a high demand on labor, and struggle to distinguish between packaging of the intended genome or unwanted side-products. Here we show that Orbitrap-based charge-detection mass spectrometry allows the very sensitive quantification of all these different AAV bioprocessing products. A protocol is presented that allows the quantification of genome-packed AAV preparations in under half an hour, requiring only micro-liter quantities of typical AAV preparations with ∼1013 viral capsids per milliliter. The method quickly assesses the integrity and amount of genome packed AAV particles to support AAV bioprocessing and characterization of this rapidly emerging class of advanced drug therapies.

5.
Nat Commun ; 12(1): 1642, 2021 03 12.
Article En | MEDLINE | ID: mdl-33712599

Adeno-associated viruses (AAVs) are increasingly used as gene therapy vectors. AAVs package their genome in a non-enveloped T = 1 icosahedral capsid of ~3.8 megaDalton, consisting of 60 subunits of 3 distinct viral proteins (VPs), which vary only in their N-terminus. While all three VPs play a role in cell-entry and transduction, their precise stoichiometry and structural organization in the capsid has remained elusive. Here we investigate the composition of several AAV serotypes by high-resolution native mass spectrometry. Our data reveal that the capsids assemble stochastically, leading to a highly heterogeneous population of capsids of variable composition, whereby even the single-most abundant VP stoichiometry represents only a small percentage of the total AAV population. We estimate that virtually every AAV capsid in a particular preparation has a unique composition. The systematic scoring of the simulations against experimental native MS data offers a sensitive new method to characterize these therapeutically important heterogeneous capsids.


Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid/chemistry , Capsid/metabolism , Dependovirus/metabolism , Animals , Dependovirus/genetics , HEK293 Cells , Humans , Serogroup , Sf9 Cells , Viral Proteins/metabolism , Virus Assembly
6.
Nat Commun ; 12(1): 883, 2021 02 09.
Article En | MEDLINE | ID: mdl-33563988

Recent advances in computational methods have enabled the predictive design of self-assembling protein nanomaterials with atomic-level accuracy. These design strategies focus exclusively on a single target structure, without consideration of the mechanism or dynamics of assembly. However, understanding the assembly process, and in particular its robustness to perturbation, will be critical for translating this class of materials into useful technologies. Here we investigate the assembly of two computationally designed, 120-subunit icosahedral complexes in detail using several complementary biochemical methods. We found that assembly of each material from its two constituent protein building blocks was highly cooperative and yielded exclusively complete, 120-subunit complexes except in one non-stoichiometric regime for one of the materials. Our results suggest that in vitro assembly provides a robust and controllable route for the manufacture of designed protein nanomaterials and confirm that cooperative assembly can be an intrinsic, rather than evolved, feature of hierarchically structured protein complexes.


Computational Chemistry , Nanostructures/chemistry , Proteins/chemistry , Models, Molecular , Protein Conformation , Protein Multimerization , Protein Stability , Protein Subunits/chemistry
7.
J Proteome Res ; 20(1): 289-304, 2021 01 01.
Article En | MEDLINE | ID: mdl-33141586

To understand and treat immunology-related diseases, a comprehensive, unbiased characterization of major histocompatibility complex (MHC) peptide ligands is of key importance. Preceding the analysis by mass spectrometry, MHC class I peptide ligands are typically isolated by MHC immunoaffinity chromatography (MHC-IAC) and less often by mild acid elution (MAE). MAE may provide a cheap alternative to MHC-IAC for suspension cells but has been hampered by the high number of contaminating, MHC-unrelated peptides. Here, we optimized MAE, yielding MHC peptide ligand purities of more than 80%. When compared with MHC-IAC, obtained peptides were similar in numbers, identities, and to a large extent intensities, while the percentage of cysteinylated peptides was 5 times higher in MAE. The latter benefitted the discovery of MHC-allotype-specific, distinct cysteinylation frequencies at individual positions of MHC peptide ligands. MAE revealed many MHC ligands with unmodified, N-terminal cysteine residues which get lost in MHC-IAC workflows. The results support the idea that MAE might be particularly valuable for the high-confidence analysis of post-translational modifications by avoiding the exposure of the investigated peptides to enzymes and reactive molecules in the cell lysate. Our improved and carefully documented MAE workflow represents a high-quality, cost-effective alternative to MHC-IAC for suspension cells.


Cysteine , Peptides , Chromatography, Affinity , Histocompatibility Antigens Class I/metabolism , Mass Spectrometry , Protein Binding
9.
Nat Methods ; 17(4): 395-398, 2020 04.
Article En | MEDLINE | ID: mdl-32152501

We demonstrate single-particle charge detection mass spectrometry on an Orbitrap for the analysis of megadalton biomolecular assemblies. We establish that the signal amplitudes of individual ions scale linearly with their charge, which can be used to resolve mixed ion populations, determine charge states and thus also determine the masses of individual ions. This enables the ultrasensitive analysis of heterogeneous protein assemblies including immunoglobulin oligomers, ribosomes, proteinaceous nanocontainers and genome-packed adeno-associated viruses.


Macromolecular Substances/chemistry , Mass Spectrometry/methods , Sensitivity and Specificity
10.
FEBS J ; 287(24): 5323-5344, 2020 12.
Article En | MEDLINE | ID: mdl-32181977

Lipidation of transmembrane proteins regulates many cellular activities, including signal transduction, cell-cell communication, and membrane trafficking. However, how lipidation at different sites in a membrane protein affects structure and function remains elusive. Here, using native mass spectrometry we determined that wild-type human tetraspanins CD9 and CD81 exhibit nonstochastic distributions of bound acyl chains. We revealed CD9 lipidation at its three most frequent lipidated sites suffices for EWI-F binding, while cysteine-to-alanine CD9 mutations markedly reduced binding of EWI-F. EWI-F binding by CD9 was rescued by mutating all or, albeit to a lesser extent, only the three most frequently lipidated sites into tryptophans. These mutations did not affect the nanoscale distribution of CD9 in cell membranes, as shown by super-resolution microscopy using a CD9-specific nanobody. Thus, these data demonstrate site-specific, possibly conformation-dependent, functionality of lipidation in tetraspanin CD9 and identify tryptophan mimicry as a possible biochemical approach to study site-specific transmembrane-protein lipidation.


Alanine/chemistry , Cell Membrane/metabolism , Lipids/chemistry , Tetraspanin 29/chemistry , Tetraspanin 29/metabolism , Tryptophan/chemistry , Alanine/genetics , Alanine/metabolism , Cell Communication , Humans , Mutation , Protein Binding , Tryptophan/genetics , Tryptophan/metabolism
11.
Nat Commun ; 9(1): 1990, 2018 05 18.
Article En | MEDLINE | ID: mdl-29777103

We genetically controlled compartmentalization in eukaryotic cells by heterologous expression of bacterial encapsulin shell and cargo proteins to engineer enclosed enzymatic reactions and size-constrained metal biomineralization. The shell protein (EncA) from Myxococcus xanthus auto-assembles into nanocompartments inside mammalian cells to which sets of native (EncB,C,D) and engineered cargo proteins self-target enabling localized bimolecular fluorescence and enzyme complementation. Encapsulation of the enzyme tyrosinase leads to the confinement of toxic melanin production for robust detection via multispectral optoacoustic tomography (MSOT). Co-expression of ferritin-like native cargo (EncB,C) results in efficient iron sequestration producing substantial contrast by magnetic resonance imaging (MRI) and allowing for magnetic cell sorting. The monodisperse, spherical, and iron-loading nanoshells are also excellent genetically encoded reporters for electron microscopy (EM). In general, eukaryotically expressed encapsulins enable cellular engineering of spatially confined multicomponent processes with versatile applications in multiscale molecular imaging, as well as intriguing implications for metabolic engineering and cellular therapy.


Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cell Engineering/methods , Myxococcus xanthus/metabolism , Animals , Bacterial Proteins/genetics , Cell Engineering/instrumentation , HEK293 Cells , Humans , Iron/metabolism , Mice , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/metabolism , Myxococcus xanthus/chemistry
...