Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.844
Filtrar
1.
Adv Sci (Weinh) ; : e2403640, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946588

RESUMEN

Ovulation is vital for successful reproduction. Following ovulation, cumulus cells and oocyte are released, while mural granulosa cells (mGCs) remain sequestered within the post-ovulatory follicle to form the corpus luteum. However, the mechanism underlying the confinement of mGCs has been a longstanding mystery. Here, in vitro and in vivo evidence is provided demonstrating that the stiffening of mGC-layer serves as an evolutionarily conserved mechanism that prevents mGCs from escaping the post-ovulatory follicles. The results from spatial transcriptome analysis and experiments reveal that focal adhesion assembly, triggered by the LH (hCG)-cAMP-PKA-CREB signaling cascade, is necessary for mGC-layer stiffening. Disrupting focal adhesion assembly through RNA interference results in stiffening failure, mGC escape, and the subsequent development of an abnormal corpus luteum characterized by decreased cell density or cavities. These findings introduce a novel concept of "mGC-layer stiffening", shedding light on the mechanism that prevents mGC escape from the post-ovulatory follicle.

2.
Front Plant Sci ; 15: 1411471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952843

RESUMEN

Introduction: Huperzia serrata is a traditional Chinese herb that has gained much attention for its production of Huperzine A (HupA). HupA has shown promise on treating Alzheimer's disease (AD). However, the biosynthetic pathway and molecular mechanism of HupA in H. serrata are still not well understood. Methods: Integrated transcriptome and metabolome analysis was performed to reveal the molecular mechanisms related to HupA biosynthesis and antioxidant activity in Huperzia serrata. Results: HT (in vitro H. serrata thallus) exhibits higher antioxidant activity and lower cytotoxicity than WH (wild H. serrata). Through hierarchical clustering analysis and qRT-PCR verification, 7 important enzyme genes and 13 transcription factors (TFs) related to HupA biosynthesis were detected. Among them, the average |log2FC| value of CYP (Cytochrome P450) and CAO (Copper amine oxidase) was the largest. Metabolomic analysis identified 12 metabolites involved in the HupA biosynthesis and 29 metabolites related to antioxidant activity. KEGG co-enrichment analysis revealed that tropane, piperidine and pyridine alkaloid biosynthesis were involved in the HupA biosynthesis pathway. Furthermore, the phenylpropanoid, phenylalanine, and flavonoid biosynthesis pathway were found to regulate the antioxidant activity of H. serrata. The study also identified seven important genes related to the regulation of antioxidant activity, including PrAO (primary-amine oxidase). Based on the above joint analysis, the biosynthetic pathway of HupA and potential mechanisms of antioxidant in H. serrata was constructed. Discussion: Through differential transcriptome and metabolome analysis, DEGs and DAMs involved in HupA biosynthesis and antioxidant-related were identified, and the potential metabolic pathway related to HupA biosynthesis and antioxidant in Huperzia serrata were constructed. This study would provide valuable insights into the HupA biosynthesis mechanism and the H. serrata thallus medicinal value.

3.
Sci Total Environ ; : 174327, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955271

RESUMEN

We employed an enhanced WRF-Chem to investigate the discrete mechanisms of aerosol-radiation-feedback (ARF), extinction-photochemistry (AEP), and heterogeneous-reactions (AHR) across different seasons in eastern China, aiming to assess the synergistic effects arising from the simultaneous operation of multiple processes on O3 and PM2.5. Our findings demonstrated that ARF fostered the accumulation of pollutants and moisture, initiating two distinct feedback mechanisms concerning O3. The elevation in the NO/NO2 ratio amplified O3 consumption. Increased near-surface moisture diminished upper-level cloud formation, thereby enhancing photolysis rates and O3 photochemical production. The pronounced impact of heightened NO/NO2 on O3 led to a decrease of 0.1-2.7 ppb. When decoupled from ARF, AEP led to a more significant reduction in photolysis rates, resulting in declines in both O3 and PM2.5, except for an anomalous increase observed in summer, with O3 increasing by 1.6 ppb and PM2.5 by 2.5 µg m-3. The heterogeneous absorption of hydroxides in spring, autumn, and winter predominantly governed the AHR-induced variation of O3, leading to a decrease in O3 by 0.7-1 ppb. Conversely, O3 variations in summer were primarily dictated by O3-sensitive chemistry, with heterogeneous absorption of NOy catalyzing a decrease of 2.4 ppb in O3. Furthermore, AHR accentuated PM2.5 by facilitating the formation of fine sulfates and ammonium while impeding nitrate formation. In summer, the collective impact of ARF, AEP, and AHR (ALL) led to a substantial reduction of 6.2 ppb in O3, alleviating the secondary oxidation of PM2.5 and leading to a decrease of 0.3 µg m-3 in PM2.5. Conversely, albeit aerosol substantially depleted O3 by 0.4-4 ppb through their interactions except for summer, aerosol feedback on PM2.5 was more pronounced, resulting in a significant increase of 1.7-6.1 µg m-3 in PM2.5. Our study underscored the seasonal disparities in the ramifications of multifaceted aerosol-ozone interplay on air quality.

4.
Front Med (Lausanne) ; 11: 1388728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957299

RESUMEN

Brain glioma, which is highly invasive and has a poor prognosis, is the most common primary intracranial tumor. Several studies have verified that the extent of resection is a considerable prognostic factor for achieving the best results in neurosurgical oncology. To obtain gross total resection (GTR), neurosurgery relies heavily on generating continuous, real-time, intraoperative glioma descriptions based on image guidance. Given the limitations of existing devices, it is imperative to develop a real-time image-guided resection technique to offer reliable functional and anatomical information during surgery. At present, the application of intraoperative ultrasound (IOUS) has been indicated to enhance resection rates and maximize brain function preservation. IOUS, which is promising due to its lower cost, minimal operational flow interruptions, and lack of radiation exposure, can enable real-time localization and precise tumor size and form descriptions while assisting in discriminating residual tumors and solving brain tissue shifts. Moreover, the application of new advancements in ultrasound technology, such as contrast-enhanced ultrasound (CEUS), three-dimensional ultrasound (3DUS), noninvasive ultrasound (NUS), and ultrasound elastography (UE), could assist in achieving GTR in glioma surgery. This article reviews the advantages and disadvantages of IOUS in glioma surgery.

5.
J Ophthalmol ; 2024: 3684626, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957378

RESUMEN

Objective: To assess repeatability and agreement of central vault for implantable collamer lens (ICL) measured by the Tomey OA-2000 biometry and Spectralis optical coherence tomography (OCT). Methods: In this prospective study, the central vault was measured by the Tomey OA-2000 biometer and Spectralis OCT in 84 eyes (43 patients) after ICL implantation at six month follow-up. Three consecutive scans were obtained by one experienced technician using Tomey OA-2000 and the Spectralis OCT in the same day. The coefficient of variation (CoV), intraclass correlation coefficient (ICC), within-subject standard deviation (Sw), and 2.77 Sw were calculated to assess the repeatability and reproducibility. The paired t-test and Bland-Altman plots were used to analyze the differences and agreements of central vault measured by two devices. Results: Repeatability of the central vault measured by Tomey OA-2000 biometer and Spectralis OCT showed that the CoV was 2.71% and 1.66%, respectively. The ICC for both devices was 0.996 and 0.999, respectively. The paired t-test showed that central vault measured by Tomey OA-2000 biometer was -7.25 ± 23.57 microns lower than that measured by Spectralis OCT (P = 0.006). The mean difference between measurements for Tomey OA-2000 and ASM-OCT with 95% limits of agreement (LoAs) was -38.94 to 53.44 µm. Conclusion: Both Tomey OA-2000 biometer and Spectralis OCT displayed good repeatability for the measurement of central vault of ICL. Good reliability and agreement were observed between Tomey OA-2000 biometer and Spectralis OCT. Both instruments are useful but not replaced each other for central vault measurements.

6.
Talanta ; 278: 126498, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38959668

RESUMEN

Lung cancer is the main cancer that endangers human life worldwide, with the highest mortality rate. The detection of lung tumor markers is of great significance for the early diagnosis and subsequent treatment of lung cancer. In this study, a vertical graphene field effect transistor (VGFET) immunosensor based on graphene/C60 heterojunction was created to offer quantitative detections for the lung tumor markers carcinoembryonic antigen (CEA), cytokeratin 19 fragment (Cyfra21-1), and neuron-specific enolase (NSE). The experimental results showed that the sensitive range for standard antigen is between 1 pg/ml to 100 ng/ml, with a limit of detection (LOD) of 5.6 amol/ml for CEA, 33.3 amol/ml for Cyfra 21-1 and 12.8 amol/ml for NSE (1 pg/ml for all). The detection accuracy for these tumor markers was compared with the clinically used method for clinical patients on serum samples. Results are highly consistent with clinically used immunoassay in its efficient diagnosis concentration range. Subsequently, the mesoporous silica nanospheres (MSNs) with an average size of 90 nm were surface modified with glutaraldehyde, and a second antibody was assembled on MSNs, which fixes nanospheres on the antigen and amplified the field effect. The LODs for three markers are 100 fg/ml (0.56 amol/ml for CEA) under optimal circumstances of detection. This result indicates that specific binding to MSNs enhances local field effects and can achieve higher sensing efficiency for tumor marker detection at extremely low concentrations, providing effective assistance for the early diagnosis of lung cancer.

7.
Pharmacol Res ; : 107290, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960012

RESUMEN

The placenta, as a "transit station" between mother and fetus, has functions delivering nutrients, excreting metabolic wastes and secreting hormones. A healthy placenta is essential for fetal growth and development while the melatonergic system seems to play a critical physiological role in this organ since melatonin, its synthetic enzymes and receptors are present in the placenta. In current study, Mtnr1a and Mtnr1b knockout mice were constructed to explore the potential roles of melatonergic system played on the placental function and intrauterine growth retardation (IUGR). The result showed that Mtnr1a knockout had little effect on placental function while Mtnr1b knockout reduced placental efficiency and increased IUGR. Considering the extremely high incidence of IURG in sows, the pregnant sows were treated with melatonin. This treatment reduced the incidence of IUGR. All the evidence suggests that the intact melatonergic system in placenta is required for its function. Mechanistical studies uncovered that Mtnr1b knockout increased placental oxidative stress and apoptosis but reduced the angiogenesis. The RNA sequencing combined with histochemistry study identified the reduced angiogenesis and placental vascular density in Mtnr1b knockout mice. These alterations were mediated by the disrupted STAT3/VEGFR2/PI3K/AKT pathway, i.e., Mtnr1b knockout reduced the phosphorylation of STAT3 which is the promotor of VEGFR2. The downregulated VEGFR2 and its downstream elements of PI3K and AKT expressions, then, jeopardizes the angiogenesis and placental development.

8.
Phys Chem Chem Phys ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946485

RESUMEN

Tuning the magnetic properties of two-dimensional van der Waals ferromagnets has special importance for their practical applications. Using first-principles calculations, we investigate the magnetic properties of Co-doped Fe3GaTe2 with different Co concentrations and different Co atomic sites. Calculation results show that Fe or Co atoms with relatively lower atomic concentrations preferentially occupy Fe1 sites with interlayer coupling, which is more energetically favorable. As the doping concentration of Co atoms increases, the total magnetic moment of the doped system decreases, while the average atomic magnetic moments of Fe1 and Fe2 increase and decrease, respectively, with Fe1 reaching ∼2.08µB. The spin polarization of the doped model 2Co-2 near the Fermi energy level is significantly reduced, while 4Co-3 exhibits an enhanced trend. At some doping level, a phase change from ferromagnetism to antiferromagnetism appears at high Co concentration. These results provide a theoretical basis for experimental studies and valuable information for the development of Fe3GaTe2-based spintronic devices.

9.
Front Plant Sci ; 15: 1405068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966145

RESUMEN

Rapidly obtaining the chlorophyll content of crop leaves is of great significance for timely diagnosis of crop health and effective field management. Multispectral imagery obtained from unmanned aerial vehicles (UAV) is being used to remotely sense the SPAD (Soil and Plant Analyzer Development) values of wheat crops. However, existing research has not yet fully considered the impact of different growth stages and crop populations on the accuracy of SPAD estimation. In this study, 300 materials from winter wheat natural populations in Xinjiang, collected between 2020 to 2022, were analyzed. UAV multispectral images were obtained in the experimental area, and vegetation indices were extracted to analyze the correlation between the selected vegetation indices and SPAD values. The input variables for the model were screened, and a support vector machine (SVM) model was constructed to estimate SPAD values during the heading, flowering, and filling stages under different water stresses. The aim was to provide a method for the rapid acquisition of winter wheat SPAD values. The results showed that the SPAD values under normal irrigation were higher than those under water restriction. Multiple vegetation indices were significantly correlated with SPAD values. In the prediction model construction of SPAD, the different models had high estimation accuracy under both normal irrigation and water limitation treatments, with correlation coefficients of predicted and measured values under normal irrigation in different environments the value of r from 0.59 to 0.81 and RMSE from 2.15 to 11.64, compared to RE from 0.10% to 1.00%; and under drought stress in different environments, correlation coefficients of predicted and measured values of r was 0.69-0.79, RMSE was 2.30-12.94, and RE was 0.10%-1.30%. This study demonstrated that the optimal combination of feature selection methods and machine learning algorithms can lead to a more accurate estimation of winter wheat SPAD values. In summary, the SVM model based on UAV multispectral images can rapidly and accurately estimate winter wheat SPAD value.

10.
Artif Intell Med ; 154: 102926, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38964193

RESUMEN

Pathological myopia (PM) is the leading ocular disease for impaired vision worldwide. Clinically, the characteristics of pathology distribution in PM are global-local on the fundus image, which plays a significant role in assisting clinicians in diagnosing PM. However, most existing deep neural networks focused on designing complex architectures but rarely explored the pathology distribution prior of PM. To tackle this issue, we propose an efficient pyramid channel attention (EPCA) module, which fully leverages the potential of the clinical pathology prior of PM with pyramid pooling and multi-scale context fusion. Then, we construct EPCA-Net for automatic PM recognition based on fundus images by stacking a sequence of EPCA modules. Moreover, motivated by the recent pretraining-and-finetuning paradigm, we attempt to adapt pre-trained natural image models for PM recognition by freezing them and treating the EPCA and other attention modules as adapters. In addition, we construct a PM recognition benchmark termed PM-fundus by collecting fundus images of PM from publicly available datasets. The comprehensive experiments demonstrate the superiority of EPCA-Net over state-of-the-art methods in the PM recognition task. For example, EPCA-Net achieves 97.56% accuracy and outperforms ViT by 2.85% accuracy on the PM-fundus dataset. The results also show that our method based on the pretraining-and-finetuning paradigm achieves competitive performance through comparisons to part of previous methods based on traditional fine-tuning paradigm with fewer tunable parameters, which has the potential to leverage more natural image foundation models to address the PM recognition task in limited medical data regime.

11.
BMC Microbiol ; 24(1): 235, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38956452

RESUMEN

BACKGROUND: Patients with pancreatic ductal adenocarcinoma (PDAC) display an altered oral, gastrointestinal, and intra-pancreatic microbiome compared to healthy individuals. However, knowledge regarding the bile microbiome and its potential impact on progression-free survival in PDACs remains limited. METHODS: Patients with PDAC (n = 45), including 20 matched pairs before and after surgery, and benign controls (n = 16) were included prospectively. The characteristics of the microbiomes of the total 81 bile were revealed by 16  S-rRNA gene sequencing. PDAC patients were divided into distinct groups based on tumor marker levels, disease staging, before and after surgery, as well as progression free survival (PFS) for further analysis. Disease diagnostic model was formulated utilizing the random forest algorithm. RESULTS: PDAC patients harbor a unique and diverse bile microbiome (PCoA, weighted Unifrac, p = 0.038), and the increasing microbial diversity is correlated with dysbiosis according to key microbes and microbial functions. Aliihoeflea emerged as the genus displaying the most significant alteration among two groups (p < 0.01). Significant differences were found in beta diversity of the bile microbiome between long-term PFS and short-term PFS groups (PCoA, weighted Unifrac, p = 0.005). Bacillota and Actinomycetota were identified as altered phylum between two groups associated with progression-free survival in all PDAC patients. Additionally, we identified three biomarkers as the most suitable set for the random forest model, which indicated a significantly elevated likelihood of disease occurrence in the PDAC group (p < 0.0001). The area under the receiver operating characteristic (ROC) curve reached 80.8% with a 95% confidence interval ranging from 55.0 to 100%. Due to the scarcity of bile samples, we were unable to conduct further external verification. CONCLUSION: PDAC is characterized by an altered microbiome of bile ducts. Biliary dysbiosis is linked with progression-free survival in all PDACs. This study revealed the alteration of the bile microbiome in PDACs and successfully developed a diagnostic model for PDAC.


Asunto(s)
Bilis , Carcinoma Ductal Pancreático , Microbiota , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/microbiología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Bilis/microbiología , Masculino , Femenino , Neoplasias Pancreáticas/microbiología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Microbiota/genética , Persona de Mediana Edad , Anciano , Disbiosis/microbiología , Supervivencia sin Progresión , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Estudios Prospectivos , ARN Ribosómico 16S/genética
12.
Diagn Microbiol Infect Dis ; 110(1): 116415, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38970947

RESUMEN

Carbapenem-resistant organism (CRO) are defined as gram-negative bacteria. The lack of safe and effective antibiotics has led to an increase in incidence rate. The purpose of this study is to establish and determine a risk nomogram to predict CRO infection in hospitalized patients. Hospitalized patients' information were collected from the electronic medical record system of hospital between January 2019 and December 2022. Based on the inclusion and exclusion criteria, we identified 131390 inpatients who met the criteria for this study. For the training cohort, the area under the curves (AUC) for predicting the CRO infection was 0.935. For the validation cohort, the AUC for predicting the CRO infection was 0.937. We have developed the first novel nomogram to predict CRO infection in hospitalized patients, which is reliable and high-performance. The nomogram performs well among hospitalized patients and has good predictive ability.

13.
Cell Stem Cell ; 31(7): 945-946, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971145

RESUMEN

Dattani et al.1 developed a method for inducing hypoblast-like cells from human naive pluripotent stem cells. They elucidated the requirement for FGF signaling in human hypoblast specialization at a specific time window, which was previously controversial.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Transducción de Señal , Humanos , Factores de Crecimiento de Fibroblastos/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Diferenciación Celular
14.
J Adv Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960276

RESUMEN

INTRODUCTION: Growing interest toward RNA modification in cancer has inspired the exploration of gene sets related to multiple RNA modifications. However, a comprehensive elucidation of the clinical value of various RNA modifications in breast cancer is still lacking. OBJECTIVES: This study aimed to provide a strategy based on RNA modification-related genes for predicting therapy response and survival outcomes in breast cancer patients. METHODS: Genes related to thirteen RNA modification patterns were integrated for establishing a nine-gene-containing signature-RMscore. Alterations of tumor immune microenvironment and therapy response featured by different RMscore levels were assessed by bulk transcriptome, single-cell transcriptome and genomics analyses. The biological function of key RMscore-related molecules was investigated by cellular experiments in vitro and in vivo, using flow cytometry, immunohistochemistry and immunofluorescence staining. RESULTS: This study has raised an effective therapy strategy for breast cancer patients after a well-rounded investigation of RNA modification-related genes. With a great performance of predicting patient prognosis, high levels of the RMscore proposed in this study represented suppressive immune microenvironment and therapy resistance, including adjuvant chemotherapy and PD-L1 blockade treatment. As the key contributor of the RMscore, inhibition of WDR4 impaired breast cancer progression significantly in vitro and in vivo, as well as participated in regulating cell cycle and mTORC1 signaling pathway via m7G modification. CONCLUSION: Briefly, this study has developed promising and effective tactics to achieve the prediction of survival probabilities and treatment response in breast cancer patients.

15.
Radiat Oncol ; 19(1): 87, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956690

RESUMEN

BACKGROUND AND PURPOSE: Various deep learning auto-segmentation (DLAS) models have been proposed, some of which have been commercialized. However, the issue of performance degradation is notable when pretrained models are deployed in the clinic. This study aims to enhance precision of a popular commercial DLAS product in rectal cancer radiotherapy by localized fine-tuning, addressing challenges in practicality and generalizability in real-world clinical settings. MATERIALS AND METHODS: A total of 120 Stage II/III mid-low rectal cancer patients were retrospectively enrolled and divided into three datasets: training (n = 60), external validation (ExVal, n = 30), and generalizability evaluation (GenEva, n = 30) datasets respectively. The patients in the training and ExVal dataset were acquired on the same CT simulator, while those in GenEva were on a different CT simulator. The commercial DLAS software was first localized fine-tuned (LFT) for clinical target volume (CTV) and organs-at-risk (OAR) using the training data, and then validated on ExVal and GenEva respectively. Performance evaluation involved comparing the LFT model with the vendor-provided pretrained model (VPM) against ground truth contours, using metrics like Dice similarity coefficient (DSC), 95th Hausdorff distance (95HD), sensitivity and specificity. RESULTS: LFT significantly improved CTV delineation accuracy (p < 0.05) with LFT outperforming VPM in target volume, DSC, 95HD and specificity. Both models exhibited adequate accuracy for bladder and femoral heads, and LFT demonstrated significant enhancement in segmenting the more complex small intestine. We did not identify performance degradation when LFT and VPM models were applied in the GenEva dataset. CONCLUSIONS: The necessity and potential benefits of LFT DLAS towards institution-specific model adaption is underscored. The commercial DLAS software exhibits superior accuracy once localized fine-tuned, and is highly robust to imaging equipment changes.


Asunto(s)
Aprendizaje Profundo , Órganos en Riesgo , Planificación de la Radioterapia Asistida por Computador , Neoplasias del Recto , Humanos , Neoplasias del Recto/radioterapia , Neoplasias del Recto/patología , Órganos en Riesgo/efectos de la radiación , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X , Adulto , Radioterapia de Intensidad Modulada/métodos
16.
Mol Genet Metab Rep ; 40: 101090, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38974841

RESUMEN

Background: We aimed to contrast plasma amino acid concentrations in pregnant women with Gestational Diabetes Mellitus (GDM) to those without, to analyze the link between plasma amino acid concentrations, GDM, insulin resistance, and insulin secretion at 24-28 weeks of gestation. Methods: The research employed a retrospective case-control study design at a single center. Basic demographic and laboratory data were procured from the hospital's case system. The study encompassed seventy women without gestational diabetes mellitus (GDM) and thirty-five women with GDM matched in a 1-to-2 ratio for age and pre-pregnancy BMI. Utilizing high-performance liquid chromatography-mass spectrometry (HPLC-MS), peripheral fasting plasma amino acid concentrations in these women, during mid-pregnancy, were duly measured. We carefully evaluated the significant differences in the quantitative data between the two groups and developed linear regression models to assess the independent risk factors affecting insulin resistance and insulin secretion. Results: Significant variations in insulin secretion and resistance levels distinguished GDM Group from the non-GDM group at three distinct time points, alongside relatively elevated serum Glycosylated Hemoglobin (HbA1c) levels. Triglycerides (TG) were also significantly increased in those with GDM during adipocytokine observations. Apart from glutamic acid and glutamine, the concentrations of the remaining 16 amino acids were notably increased in GDM patients, including all branched chain amino acids(BCAAs) and aromatic amino acids(AAAs). Ultimately, it was ascertained that fasting serum phenylalanine levels were independent risk factors affecting insulin resistance index and insulin secretion at various phases. Conclusions: Various fasting serum amino acid levels are markedly increased in patients with GDM, specifically phenylalanine, which may play role in insulin resistance and secretion.

17.
Aging Med (Milton) ; 7(3): 384-392, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975318

RESUMEN

Objectives: This study aims to describe the differences in body composition among different body parts of the elderly in the community and its relationship with sarcopenia. Methods: Elderly people aged ≥65 underwent bioelectric impedance analysis testing and were categorized into a sarcopenia group, possible sarcopenia group, and control group. The characteristics of body composition indicators in different parts and their relationship with different stages of sarcopenia were analyzed. Results: The sarcopenia group illustrated the lowest values of FFM, FFM%, BFM, BFM%, ICW, and limb PhA, along with higher ECW/TBW in the trunk and left leg compared to the control group. The possible sarcopenia group showed lower FFM% in limbs and trunk, and higher BFM% compared to the control group. Gender differences in elderly body composition were observed, with an increase in BFM% in various body parts posing a risk factor for possible sarcopenia in elderly males, whereas an increase in BFM% except in the left arm was a protective factor for sarcopenia in elderly females. Conclusion: The body composition of the elderly in the community varied significantly in different stages of sarcopenia and genders, which correlated with sarcopenia.

18.
Theor Appl Genet ; 137(7): 173, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937300

RESUMEN

KEY MESSAGE: Genetic editing of grain size genes quickly improves three-line hybrid rice parents to increase the appearance quality and yield of hybrid rice. Grain size affects rice yield and quality. In this study, we used CRISPR/Cas9 to edit the grain size gene GW8 in the maintainer line WaitaiB (WTB) and restorer line Guanghui998 (GH998). The new slender sterile line WTEA (gw8) was obtained in the BC2F1 generation by transferring the grain mutation of the maintainer plant to the corresponding sterile line WantaiA (WTA, GW8) in the T1 generation. Two slender restorer lines, GH998E1 (gw8(II)) and GH998E2 (gw8(I)), were obtained in T1 generation. In the early stage, new sterile and restorer lines in grain mutations were created by targeted editing of GS3, TGW3, and GW8 genes. These parental lines were mated to detect the impact of grain-type mutations on hybrid rice yield and quality. Mutations in gs3, gw8, and tgw3 had a minimal impact on agronomic traits except the grain size and thousand-grain weight. The decrease in grain width in the combination mainly came from gw8/gw8, gs3/gs3 increased the grain length, gs3/gs3-gw8/gw8 had a more significant effect on the grain length, and gs3/gs3-gw8/gw8(I) contributed more to grain length than gs3/gs3-gw8/gw8(II). The heterozygous TGW3/tgw3 may not significantly increase grain length. Electron microscopy revealed that the low-chalky slender-grain variety had a cylindrical grain shape, a uniform distribution of endosperm cells, and tightly arranged starch grains. Quantitative fluorescence analysis of endospermdevelopment-related genes showed that the combination of slender grain hybrid rice caused by gs3 and gw8 mutations promoted endosperm development and improved appearance quality. An appropriate grain size mutation resulted in hybrid rice varieties with high yield and quality.


Asunto(s)
Sistemas CRISPR-Cas , Grano Comestible , Edición Génica , Oryza , Oryza/genética , Oryza/crecimiento & desarrollo , Edición Génica/métodos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Genes de Plantas , Fenotipo , Fitomejoramiento/métodos , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
19.
Cell Death Dis ; 15(6): 459, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942747

RESUMEN

Aging and obesity pose significant threats to public health and are major contributors to muscle atrophy. The trends in muscle fiber types under these conditions and the transcriptional differences between different muscle fiber types remain unclear. Here, we demonstrate distinct responses of fast/glycolytic fibers and slow/oxidative fibers to aging and obesity. We found that in muscles dominated by oxidative fibers, the proportion of oxidative fibers remains unchanged during aging and obesity. However, in muscles dominated by glycolytic fibers, despite the low content of oxidative fibers, a significant decrease in proportion of oxidative fibers was observed. Consistently, our study uncovered that during aging and obesity, fast/glycolytic fibers specifically increased the expression of genes associated with muscle atrophy and inflammation, including Dkk3, Ccl8, Cxcl10, Cxcl13, Fbxo32, Depp1, and Chac1, while slow/oxidative fibers exhibit elevated expression of antioxidant protein Nqo-1 and downregulation of Tfrc. Additionally, we noted substantial differences in the expression of calcium-related signaling pathways between fast/glycolytic fibers and slow/oxidative fibers in response to aging and obesity. Treatment with a calcium channel inhibitor thapsigargin significantly increased the abundance of oxidative fibers. Our study provides additional evidence to support the transcriptomic differences in muscle fiber types under pathophysiological conditions, thereby establishing a theoretical basis for modulating muscle fiber types in disease treatment.


Asunto(s)
Envejecimiento , Perfilación de la Expresión Génica , Glucólisis , Obesidad , Envejecimiento/metabolismo , Envejecimiento/genética , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Transcriptoma/genética , Fibras Musculares de Contracción Lenta/metabolismo , Humanos
20.
Toxics ; 12(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38922076

RESUMEN

Smoking is a pathogenic factor for pulmonary hypertension (PH). Our previous study showed that serum miR-21 levels are elevated in smokers. miR-21 is considered as engaged in the PH process; however, its mechanisms remain unclear. In this investigation, we found that in the lung tissue of smoking-induced PH patients, the levels of miR-21 and aging markers (p21 and p16) were upregulated, and the function of pulmonary vascular endothelial cells was also impaired. Exposure of mice to cigarette smoke (CS) for four months caused similar changes in lung tissues and increased pulmonary arterial pressure, which were attenuated by knockout of miR-21. Further, human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) revealed upregulation of miR-21 levels, depression of PTEN, activation of PI3K/AKT/mTOR signaling, an increase in senescence indexes, and enhanced dysfunction. Inhibiting miR-21 overexpression reversed the PTEN-mTOR signaling pathway and prevented senescence and dysfunction of HUVECs. In sum, our data indicate that miR-21-mediated endothelial senescence and dysfunction are involved in CS-induced PH through the activation of PI3K/AKT/mTOR signaling, which suggests that selective miR-21 inhibition offers the potential to attenuate PH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...